
STAT 26100 - Review

Solutions

Exercise 1: Define autocovariance, autocorrelation, cross-covariance, and cross-correlation.

Solution 1:

Autocovariance: γ(i, j) = Cov(Xi, Xj).

Autocorrelation: ρ(i, j) = γ(i,j)√
γ(i,i)γ(j,j)

.

Cross-covariance: γXY (i, j) = Cov(Xi, Yj).

Cross-correlation: ρXY (i, j) = γXY (i,j)√
γX(i,i)γY (j,j)

.

Exercise 2: Define strong and weak stationarity. Define joint stationarity.

Solution 2:

Strong stationarity: P{Xt1 , · · · , Xtk} = P{Xt1+h, · · · , Xtk+h}.

Weak stationarity: E(Xt) = E(Xt+h) is constant and Cov(Xt, Xt′) = Cov(Xt+h, Xt′+h) depends
only on the time difference h.

Joint stationarity: Xt and Yt are jointly stationary if

1. Xt and Yt are both stationary, and

2. the cross-covariance γXY (t+ h, t) = Cov(xt+h, yt) depends only on the time difference h.

Exercise 3: Define short and long memory.

Solution 3:
A stationary series has short memory if

∑∞
j=−∞ |γ(h)| <∞, and has long memory if

∑∞
j=−∞ |γ(h)| =

∞.

Exercise 4: Show that if limk→∞ γ(k) = 0, then X̄n → µ in probability.
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Solution 4:
Use Gauss + triangle inequality.

Exercise 5: What is Chebyshev’s inequality?

Solution 5:
For any ε > 0, P{|X| ≥ ε} ≤ E|X|2

ε2 (if the second moment exists).

Exercise 6: Define mean square convergence, convergence in probability, and convergence in dis-
tribution. Show that mean square convergence implies convergence in probability.

Solution 6:
Mean square convergence is when a sequence of random variables Xn is such that E|Xn − X|2 →
0 as n → ∞. Convergence is when a sequence of random variables is such that for any ε > 0,
P{|Xn−X| ≥ ε} → 0 as n→∞. Convergence in distribution is when a sequence of random variables
with distribution functions fn are such that fn → fX as n→∞.

By Chebyshev,

P{|Xn −X| ≥ ε} ≤
E|Xn −X|2

ε2
→ 0.

Exercise 7: State the normal CLT, the M-dependent CLT, and the linear process CLT.

Solution 7:
The normal CLT. If x1, · · · , xn are iid with mean µ and variance σ2, let x̄n be the sample mean.
Then

x̄n ∼ AN(µ, σ2/n).

The M-dependent CLT. If {xt} is a strictly stationary M -dependent series with mean µ, then if

VM =
∑M
j=−M γx(j), then

x̄n ∼ AN(µ, Vm/n).

The linear process CLT. Let xt = µx +
∑∞
j=−∞ ψjwt−j , where wt ∼ i.i.d.(0, σ2

w), and∑∞
j=−∞ |ψj | <∞. Then

x̄n ∼ AN(µx, n
−1

∞∑
j=−∞

γx(j))

∼ AN(µx, n
−1σ2

w(

∞∑
j=−∞

ψj)
2)
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Exercise 8: State the weak and strong law of large numbers.

Solution 8:
Weak. X̄ → µ in probability.
Strong. If {Xt} are iid, then X̄ → µ almost surely.

Exercise 9: Let Xt = µ+Wt + θWt−1, where Wt ∼i.i.d. N(0, σ2) and |θ| < 1. Let µ̃ be the BLUE
of µ. Show that µ̃→ µ in probability.

Solution 9:
Let ε > 0. By Chebyshev’s inequality, we have

P{|µ̃− µ| ≥ ε} ≤ E|µ̃− µ|2

ε2
.

Since µ̃ is the BLUE of µ, Var(µ̃) = E|µ̃− µ|2. Consider the sample mean µ̄, which has variance σ2

n
and is also unbiased. Since Var(µ̄) = E|µ̄− µ|2 → 0 as n→∞ and µ̃ is the BLUE, it must be that

E|µ̃− µ|2 ≤ E|µ̄− µ|2 → 0.

Exercise 10: Define AR(p). What is the autoregressive polynomial / operator?

Solution 10:
The AR(p) model is φ(B)Xt = wt, where φ(z) = 1−φ1z−· · ·−φpzp and B is the backshift operator.

Exercise 11: Define MA(q). What is the moving average polynomial / operator?

Solution 11:
The MA (q) model is Xt = θ(B)wt, where θ(z) = 1+θ1z+ · · ·+θqz

q and B is the backshift operator.

Exercise 12: Define a causal ARMA(p, q) model. Define an invertible ARMA(p, q) model. What
are the conditions for both? How would you find the causal / invertible form?

Solution 12:
An ARMA(p, q) model is causal if there exists a representation xt =

∑∞
j=0 ψjwt−j where

∑∞
j=0 |ψj | <

∞ and ψ0 = 1. A model is causal if and only if all the roots of the autoregressive polynomial lie outside
of the unit circle. The causal parameters can be found through the equation

ψ(z) =
θ(z)

φ(z)
.

An ARMA(p, q) model is invertible if there exists a representation wt =
∑∞
j=0 πjxt−j , where∑∞

j=0 |πj | < ∞ and π0 = 1. A model is invertible if and only if all the roots of the moving av-
erage polynomial lie outside of the unit circle. The inverted parameters can be found through the
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equation

π(z) =
φ(z)

θ(z)
.

Exercise 13: Define the PACF, and describe in intuitive terms. What can you say about the best
linear predictors x̂t+h and x̂t (based on values xt+1, · · · , xt+h−1)?

Solution 13:
The PACF with lag h is the correlation between xt+h and xt with the linear dependence removed.
In particular, let

x̂t+h = α1xt+h−1 + · · ·+ αh−1xt+1

x̂t = β1xt+h−1 + · · ·+ βh−1xt+1.

Then

φ11 = ρ(1)

φhh = Corr(xt+h − x̂t+h, xt − x̂t).

Due to stationarity, the best coefficients are equivalent i.e.

∀i, αi = βi.

Exercise 14: Find the PACF for an AR(1) process. Find the PACF of an MA(1) process.

Solution 14:
For AR(1), φ11 = φ and φkk = 0 for k ≥ 2. For MA(1), φhh = − (−θ)h(1−θ2)

1−θ2(h+1) for h ≥ 1.

Exercise 15: What is the minimum mean square error predictor of xn+m, where you have access
to xn, · · · ?

Solution 15:
The best predictor is the conditional expectation E(xn+m|xn, · · · ).

Exercise 16: How do you find the best m-step ahead linear predictor? What is the prediction error
for the best one-step ahead linear predictor?

Solution 16:
Denote xnn+m = β0 +

∑n
i=1 βixi as the best m-step ahead linear predictor. We have the following

equation

xnn+m = arg min
β0,··· ,βn−1

E[xn+m − β0 +

n∑
i=1

βixi]
2.
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The best parameters can be found with the following: for k = 0, · · · , n (where x0 = 1)

E[(xn+m − xnn+m)xk] = 0.

The k = 0 equation gives that β0 = µ. Minusing out the mean, expanded into matrix form, and
applying the expectation, we get

γ(0) γ(1) · · · γ(n− 1)
γ(1) γ(0) · · · γ(n− 2)

...
...

. . .
...

γ(n− 1) γ(n− 2) · · · γ(0)


︸ ︷︷ ︸

Γn

β1

...
βn


︸ ︷︷ ︸
Bn

=

γ(m+ (n− 1))
...

γ(m)


︸ ︷︷ ︸

γm+n−1
m

.

The parameters for the best m-step ahead linear predictor can then be found with Bn = Γ−1
n γm+n−1

m .
If x = [x1, ...xn]T , the prediction error is given by

E(xn+1 −BT
nx)2 = E(x2

n+1 − 2Bnxn+1x+ BT
nxx

TBn)

= γ(0)− 2Bnγ
n
1 + BT

nΓnBn

= γ(0)− (γn1 )TΓ−1
n γn1 .

Exercise 17: What is the best one-step ahead linear predictor of AR(p) with autoregressive poly-
nomial φ(·), assuming that n ≥ p? What is the prediction error based on MSE?

Solution 17:
The best one-step ahead linear predictor of AR(p) is φ(B)xn. Assuming the white noise component
has variance σ2

w, the prediction error is

E(xn+1 − φ1xn − · · · − φpx1)2 = E(wn+1)2

= σ2
w.

Exercise 18: Explain why using the prediction equations for the best linear predictor may not be
optimal when n is large.

Solution 18:
Inverting a matrix is computationally expensive (although since Γn is symmetric positive semidefinite,
I don’t know why you wouldn’t use Cholesky if its definite, LU, or some sort of block matrix thing?)

Exercise 19: Derive the truncated m-step ahead predictor for ARMA(p, q) that is both causal and
invertible. Explain the relationship between the following:

1. xnn+m = E(xn+m|xn, · · · , x1)

2. x̃n+m = E(xn+m|xn, · · · )

3. x̃nn+m = truncated predictor of x̃n+m.
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Solution 19:
We first explain the relationship between the three predictors. In the optimal case, we want xnn+m.
The idea is that x̃n+m is a good estimate of xnn+m if n is large. But we usually don’t have access to
the infinite past, so the idea is that x̃nn+m is a good estimate of x̃n+m. Hence, denoting → as “is an
estimator of”, we have

x̃nn+m → x̃n+m → xnn+m.

Given these relationships, we first derive x̃n+m. Write xt in its causal and invertible forms:

xt =

∞∑
j=0

ψjwt−j , ψ0 = 1

wt =

∞∑
j=0

πjxt−j , π0 = 1.

Taking the conditional mean, we have from causality and invertibility that

x̃n+m =

∞∑
j=0

ψjw̃n+m−j =

∞∑
j=m

ψjwn+m−j .

The mean square prediction error is then

E(xn+m − x̃n+m)2 = E

m−1∑
j=0

ψjwn+m−j

2

= σ2
w

m−1∑
j=0

ψ2
j .

Notice that as m → ∞, x̃n+m quickly converges to the mean, and the mean square prediction error
converges to σ2

w

∑∞
j=0 ψ

2
j = γx(0).

A recursive algorithm for x̃n+m can be found from the invertible form:

0 = w̃n+m = x̃n+m +

∞∑
j=1

πj x̃t−j .

This means

x̃n+m = −
∞∑
j=1

πj x̃n+m−j

= −
m−1∑
j=1

πj x̃n+m−j −
∞∑
j=m

πjxn+m−j .

To find x̃nn+m, we just replace the values that we don’t have access to with 0 i.e. all nonpositive
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indexed values are set to zero. In particular, this means

x̃nn+m = −
m−1∑
j=1

πj x̃
n
n+m−j −

n+m−1∑
j=m

πjxn+m−j .

Written explicitly, the truncated predictor is

x̃nn+m =φ1x̃
n
n+m−1 + · · ·+ φpx̃

n
n+m−p+

θ1w̃
n
n+m−1 + · · ·+ θqw̃

n
n+m−q,

where x̃nt =

{
0, t ≤ 0

xt, 1 ≤ t ≤ n
,

w̃nt =

{
0, t ≤ 0, t > n

φ(B)x̃nt − θ1w̃
n
t−1 − · · · − θqw̃nt−q 1 ≤ t ≤ n.

Exercise 20: Find the m-step ahead truncated predictor for MA(q). What is the prediction error?
Use to find 95% confidence interval.

Solution 20:
For an invertible MA(q) where q > m, it is clear that

x̃nn+m = θmwn + · · · θqwn+m−q.

The prediction error is

E(xn+m − x̃nn+m)2 = E(wn+m + θ1wn+m−1 + · · ·+ θm−1wn+1)2

= σ2
w

m−1∑
j=0

θ2
j , θ0 = 1.

If the white noise is Gaussian, then an approximate 95% confidence interval would be x̃nn+m ± 1.96 ·√
σ2
w

∑m−1
j=0 θ2

j .

Exercise 21: Find the one-step ahead predictions under the following models: AR(2), MA(1),
ARMA(1,1), based on the infinite past. What is the mean-square prediction error of the conditional
estimator (conditional on the infinite past)?

Solution 21:
For AR(2), assume the model xt = φ1xt−1 +φ2xt−2 +wt. Assuming we have xt, · · · , we want to find

β̂1, β̂2 = arg min
β1,β2

E(xt+1 − β1xt − β2xt−1)2.

Differentiating and equalling to zero, this is equivalent to solving

γ(0)β̂1 + γ(1)β̂2 = γ(1)

γ(1)β̂1 + γ(0)β̂2 = γ(2).
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Given that ρ(1) = φ1

1−φ2
, we find that β̂1 = φ1 and β̂2 = φ2. Hence the best linear predictor is

xt+1 = φ1xt + φ2xt−1. We could have also found this by taking the conditional expectation:

E(xt+1|xt, · · · ) = E(φ1xt + φ2xt−1 + wt+1|xt, · · · )
= φ1xt + φ2xt−1.

For MA(1), assume the model xt = wt+θwt−1 and further assume that it is invertible. Then assuming
we have xt, · · · , we have

E(xt+1|xt, · · · ) = E(wt+1 + θ

∞∑
j=0

πjxt−j |xt, · · · )

= θ

∞∑
j=0

πjxt−j = θwt.

For ARMA(1,1), assume the model xt + φxt−1 = wt + θwt−1, and further assume causality and
invertibility.

Exercise 22: Let Xt = µ+Wt + θWt−1, where Wt ∼i.i.d. N(0, σ2) and |θ| < 1. Let µ̃ be the BLUE
of µ. Based on X1, · · · , XT , construct an approximate 0.95 confidence interval for XT+1. Do the
same for XT+2.

Solution 22:

Exercise 23: Describe three ways of finding parameter estimates for ARMA(p, q). What are the
asymptotics? Use the three methods to find estimators for AR(1).

Solution 23:
The three primary ways are method of moments, conditional LSE, and MLE. The asymptotics for
conditional LSE and MLE, initialized with method of moments estimators...

Exercise 24: What are the Yule-Walker equations? How are they related to the estimation methods
above?

Solution 24:
The Yule-Walker equations are basically a way to find the method of moment estimators for AR(p).
They happen to be equivalent to the conditional LSE method, so the method of moment estimator
is optimal in this case.

Exercise 25: Construct a method of moments estimator for MA(1). Show how you would construct
a more optimal parameter estimate for MA(q), and show which of the three estimation methods are
related to this more-optimal method.

Solution 25:
The innovations algorithm can be used to find a more optimal parameter estimate - it is an iterative
method for finding the conditional LSE estimate.
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Exercise 26: Show that the asymptotic distributions of φ̂ and θ̂ from AR(1) and MA(1) (respec-
tively) are of the same form.

Exercise 27: What is the spectral distribution function? What is the spectral density function?
Find the spectral distribution of Xt = U1cos(2πω0t) + U2sin(2πω0t), where U1, U2 are uncorrelated
zero-mean random variables with equal variance σ2.

Solution 27:
If {xt} is stationary with autocovariance γx, there exists a monotonically increasing right-continuous-
left-limit function F (ω) with F (−∞) = F (−1/2) = 0 and F (∞) = F (1/2) = γ(0) such that

γ(h) =

∫ 1/2

−1/2

e2πiωhdF (ω).

The spectral density function is F ′(θ) = f(θ).

Define ct = cos(2πω0t) and st = sin(2πω0t). Then

γ(h) = σ2(ct+hct + st+hst)

= σ2 cos(2πω0h)

= σ2

(
exp(2πiω0h)

2
+

exp(−2πiω0h)

2

)
.

This implies that

F (ω) =


0, ω < −ω0

σ2

2 , −ω0 ≤ ω < ω0

σ2, ω0 ≤ ω.

Exercise 28: What is the Discrete Fourier Transform (DFT) and its inverse? Decompose it into
its sine and cosine parts.

Solution 28:
Given X1, · · · , Xn, and fundamental frequencies ωj = j/n for j = 0, · · · , n− 1, the DFT is defined as

d(ωj) = n−1/2
n∑
t=1

Xt exp(−2πiωjt).

The inverse DFT is given by

Xt = n−1/2
n−1∑
j=0

d(ωj) exp(2πiωjt).
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The cosine and sine parts of the DFT are

dc(ωj) = n−1/2
n∑
t=1

Xt cos(2πωjt)

ds(ωj) = n−1/2
n∑
t=1

Xt sin(2πωjt).

This implies that d(ωj) = dc(ωj)− i · ds(ωj).

Exercise 29: What is the relationship between the spectral density function and the autocovariance
for a stationary process with weak memory?

Solution 29:
If γx(·) of a stationary series {xt} has weak memory, then

γ(h) =

∫ 1/2

−1/2

exp(2πiωh)f(ω)dω.

The inverse transform is

f(ω) =

∞∑
h=−∞

γ(h) exp(−2πiωh).

Exercise 30: Suppose yt =
∑∞
j=−∞ ajxt−j , and

∑∞
j=−∞ |aj | < ∞. Let A(ω) =∑∞

j=−∞ aj exp(−2πiωj). Show that

fy(ω) = |A(ω)|2fx(ω).

Exercise 31: Find the spectral density functions of AR(1), MA(1), and ARMA(1,1).

Solution 31:
Let ρ = exp(−2πiω). For AR(1), suppose xt = φxt−1 + wt. Then write

wt = xt − φxt−1

w0 = x0 − φx−1.

Then E(wtw0) = σ2
w if and only if t = 0. Hence

σ2
w = fx(ω)(1 + φ2 − φρ−1 − φρ).

This means

fx(ω) =
σ2
w

1− φρ−1 − φρ+ φ2
.
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For MA(1), suppose xt = wt + θwt−1. Then write

xt = wt + θwt−1

x0 = w0 + θw−1.

Then using the same summing trick, we get

fx(ω) = σ2
2(1 + θ2 + θρ+ θρ−1).

For ARMA(1,1), suppose xt − φxt−1 = wt + θwt−1. Then using the same summing trick, we get

fx(ω) = σ2
2

1 + θ2 + θρ+ θρ−1

1 + φ2 − φρ− φρ−1
.

Exercise 32: Show that if {XT } ∼ ARMA(p, q) with autoregressive polynomial φ and moving
average polynomial θ, and ρ(ω) = e−2πiω, then the spectral density function is given by

fx(ω) = σ2
w

|θ(ρ)|2

|φ(ρ)|2
.

Solution 32:
Use the summing trick.

Exercise 33: What is the periodogram? Decompose into sine and cosine components.

Solution 33:
Given X1, · · ·Xn and the fundamental frequencies ωj = j/n for j = 0, · · · , n− 1, the periodogram is
defined as

I(ωj) = |d(ωj)|2

= n−1

∣∣∣∣∣
n∑
t=1

Xt exp(−2πiωjt)

∣∣∣∣∣
2

= (dc(ωj)− i · ds(ωj))(dc(ωj) + i · ds(ωj))
= dc(ωj)

2 + ds(ωj)
2.

Decomposed into its sine and cosine components:

I(ωj) = |d(ωj)|2

= dc(ωj)
2 + ds(ωj)

2.

Exercise 34: Show the relationship between the periodogram and the ANOVA table.

Exercise 35: Give three nonparametric estimators of the spectral density function, and derive their
inference properties.
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Solution 35:
Three nonparametric estimators:

1. Periodogram

2. Smoothed periodogram

3. Lagged-window periodogram

Periodogram. Choose ωj ≈ ω. We can write the periodogram as follows:

I(ωj) =

n−1∑
h=−(n−1)

γ̂(h) exp(−2πiωjh).

The periodogram is hence the naive spectral density estimator - it just substitutes estimators for
autocovariance. To derive some inference properties, notice that if xt ∼i.i.d. N(0, 1), then for any
j = 0, · · · , n− 1, dc(ωj), ds(ωj) ∼ N(0, 1/2). Also, the two are independent. This means

2I(ωj) = (
√

2dc(ωj))
2︸ ︷︷ ︸

∼N(0,1)2

+ (
√

2ds(ωj))
2︸ ︷︷ ︸

∼N(0,1)2

∼ χ2
2.

(Note that the spectral density is 1 if xt are iid.) In general, if xt is stationary, then for any
j = 0, · · · , n− 1,

2I(ωj)

f(ωj)
→d χ

2
2 ⇐⇒

I(ωj)

f(ωj)
→d exp(1).

In fact,

I(ωj)

f(ωj)
→i.i.d. exp(1).

The periodogram is unbiased (just note that expectation of exp(1) is 1), but it has shitty variance.

Smoothed Periodogram. Let κm(·) be a kernel function. Choose ωj ≈ ω. The smoothed peri-
odogram is defined as

Ī(ω) =

m∑
k=−m

κm(k) · I
(
ωj +

k

n

)
.

The intuition is that most spectral densities change very little over small intervals - hence by averaging,
we can hopefully reduce variability at the cost of increasing bias.
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For bias, we have

E(Ī(ω)) = E

[
m∑

k=−m

κm(k) · I
(
ωj +

k

n

)]

≈
m∑

k=−m

κm(k) · f
(
ω +

k

n

)

≈
m∑

k=−m

κm(k) ·
[
f(ω) +

k

n
f ′(ω) +

1

2

k2

n2
f ′′(ω)

]

= f(ω) +
f ′′(ω)

2n2

m∑
k=−m

κm(k) · k2.

This means bias is approximated by f ′′(ω)
2n2

∑m
k=−m κm(k) · k2.

For variance, recall that the periodogram at the fundamental frequencies are approximately indepen-
dently distributed according to f(ωj) · exp(1). This means

Var(Ī(ω)) ≈
m∑

k=−m

κm(k)2Var

(
I

(
ωj +

k

n

))

≈
m∑

k=−m

κm(k)2f(ω)2

= f(ω)2
m∑

k=−m

κm(k)2.

From now on, assume the rectangular kernel i.e. κm(k) = 1
2m+1 for −m ≤ k ≤ m. This kernel gives

Bias(Ī(ω)) ≈ f ′′(ω)

n2
· m(m+ 1)

6
∝ (m/n)2,

Var(Ī(ω)) ≈ f(ω)2

2m+ 1
.

The bias converges to zero as n → ∞ as long as m/n → 0. The variances converges to zero as
m → ∞. For asymptotics, we can obtain two asymptotic distributions. For the first, notice that
the periodograms are roughly independent, and assume that the smoothed periodogram is roughly
unbiased. By the CLT, we have

Ī(ω)− f(ω)→ N

(
0,

f(ω)2

2m+ 1

)
or

√
2m+ 1(Ī(ω)− f(ω))→ N(0, f(ω)2).

However, notice also that Ī(ω) is roughly the sum of approximately independent chi-square distribu-
tions. This suggests

2(2m+ 1)Ī(ω)

f(ω)
→ χ2

2(2m+1).
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For both asymptotics, we use log to stabilize the variance. In particular, the confidence intervals are

CLT: log(f(ω))±
[
log(Ī(ω))±

z1−α/2√
2m+ 1

]
Chi: log(ω̄) + log

2(2m+ 1)

χ1−α/2
≤ log(f(ω)) ≤ log(ω̄) + log

2(2m+ 1)

χα/2

Lagged-window periodogram. This is exactly like the periodogram, except for large lags, we
estimate γ̂ to be zero. The lagged-window periodogram is

Ĩ(ω) =

B∑
h=−B

γ̂(h) exp(−2πiωjh), where B ∼ n−1/3.

Exercise 36: Give a parametric estimator of the spectral density function.

Solution 36:
Because we know the form of the spectral density function for a ARMA(p, q) process, we can estimate
the parameters of the process to get

fx(ω) = σ̂2
w

|θ̂(ρ)|2

|φ̂(ρ)|2
, where σ2

w is the sample variance.

Exercise 37: Define cross-spectrum and cross-coherence. What is an estimator for the cross-
spectrum?

Solution 37:
The cross-spectrum is defined as fXY (ω) =

∑∞
h=−∞ γXY (h)ρh, where ρ = exp(−2πiω). We can

impute γ̂ for an estimator. Cross-coherence is defined as ρxy = |fXY (ω)|√
fXX(ω)

√
fY Y (ω)

.

Exercise 38: How would you estimate the parameters for xt = a|xt−1|+ wt?

Solution 38:
Define the model

xt = a1xt−1≥0 − a1xt−1≤0 + wt.

Then we can estimate a in the same way as linear regression.

Exercise 39: What is the ARCH(1,1) model? State some properties about the model. How would
you estimate the parameters?

Solution 39:

14



The ARCH(1,1) model is defined as

xt = εt

√
a2

0 + a2
1x

2
t−1, εt ∼i.i.d. N(0, 1).

Some properties:

1. The conditional distribution xt|xt−1 = x ∼ N(0, a2
0 + a2

1x
2).

2. xt is a martingale.

3. E(x2
t ) <∞ if and only if a2

1 < 1.

4. E(log |a1ε1|) < 0 if and only if xt is stationary.

5. If a4
1 <

1
3 , then the fourth moment is finite.

We can estimate using MLE on the distribution of xt|xt−1 = x. In particular, we have

a0, a1 = arg max

n∏
t=2

f(xt|xt−1).

Exercise 40: Define the negative binomial. What is the gamma function?

Solution 40:
If a ∈ Q, then (

a

k

)
=
a(a− 1) · · · (a− (k − 1))

k!
.

The gamma function is

Γ(λ) =

∫ ∞
0

e−xxλ−1dx.

Notice that Γ(n) = (n− 1)! if n ∈ N and Γ(λ) = Γ(λ+ 1).

Exercise 41: Define ARFIMA(p, d, q).

Solution 41:
Same as ARIMA, but with fractional differencing based on the negative binomial.
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