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1 Functions of RV

Definition 1.1. Let X be a random variable (continuous or discrete). Define the random variable Y = g(X),
where g is a function from the range of X to the reals. Then g is called a function of a random variable.
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Remark 1.2. If X is discrete, then Y will necessarily be discrete. However, if X is continuous, then Y may
be discrete, continuous, or mixed (in the univariate case).

Question 1.3. How are X and Y = g(X) related to each other? In particular, how are their distributions
(probability function / density function / CDF) related?

1.1 Discrete case

The discrete case is pretty easy. Given that the PDF of X is pX , we have that

pY (Y = y) = P (Y = y)

= P (g(x such that g(x) = y)

=
∑

P (X = x), where g(x) = y.

Of course, the CDF can be derived from this probability function, so we omit it here.

1.2 Continuous case

1.2.1 Special case: invertible function

Remark 1.4. See Rudin problem 5.2 for reference of when the inverse function exists and is differentiable.

Suppose X is a continuous random variable, and g is differentiable and strictly monotone. Set Y = g(X).
Because g is strictly monotone and differentiable, g−1 exists and is continuous, so Y is also a continuous
random variable. Hence, given the density function fX , we have

fY (y) = fX(g−1(y))︸ ︷︷ ︸
A

∣∣∣∣ ddy g−1(y)

∣∣∣∣︸ ︷︷ ︸
B

.

The intuition is that the density function of Y at y is equal to (A) the density function of X at x such
that g(x) = y , scaled appropriately by (B) the rate of change of g−1 at y.

The reason why the scaling factor B is necessary is to preserve the total area of 1 under the density
curve. By the inverse function theorem, we know that the rate of change of g−1 at y is equal to 1

g′(x) . So

we’re simply scaling back down the same amount that x was scaled up by g.

Proof. Assume WLOG that g is strictly increasing.

P (a < Y < b) = P (g−1(a) < X < g−1(b))

=

∫ g−1(b)

g−1(a)

fX(x)dx

=

∫ b

a

fX(g−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣ dy
By definition of density function, fY (y) = fX(g−1(y))

∣∣∣ ddy g−1(y)
∣∣∣ .

A function g of the form g(X) = aX + b such that a 6= 0, b ∈ R follows this special case, because g is
differentiable and strictly monotone. Hence, using the logic above, we can say

fY (y) = fX

(
y − b
a

)
· 1

|a|
.
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1.2.2 General case: strategy

Remark 1.5. The special case above can also be derived from this general strategy.

The general strategy is the find the CDF of the new random variable Y , then differentiate it to get the
density function. This means manipulating the inequalities to get something in terms of X, and subsequently
using the CDF of X to get the CDF of Y.

1.2.3 Uniform Distribution

Remark 1.6. With F representing the CDF, we assume that F is strictly increasing for the below 2 theorems.

Theorem 1.7. Let X be a continuous random variable, and let F be its CDF. Then the random variable
Y = F (X) is uniformly distributed on [0, 1]. In other words, Y ∼ Uniform[0, 1].

Proof. Let FY be the CDF of Y. Then

FY (p) = P (Y ≤ p) = P (F (X) ≤ p).

Because F is a CDF, it is continuous. Furthermore, for any t ∈ (0, 1), there always exists a point p1, p2

such that F (p1) < t < F (p2). By the intermediate value theorem, for all p ∈ (0, 1), there exists x such that
F (x) = p. Also F is strictly increasing by definition of CDF, so any x′ such that F (x′) ≤ p also has that
x′ ≤ x. Therefore,

P (F (X) ≤ p) = P (X ≤ x) = F (x) = p.

The CDF of Uniform[0, 1] is the identity function, and since FY (p) = p, Y ∼ Uniform[0, 1].

Theorem 1.8. Let U ∼ Uniform[0, 1], and let F−1 be the CDF of a particular distribution. Then X =
F−1(U) is distributed according to the particular distribution that F defines.

In particular, this means that we can obtain a random variable with any distribution, as long as that
distribution has an invertible CDF.

Proof. P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x).

2 Joint Distributions

Joint distributions refer to the related probability distributions of two or more random variables defined on
the same sample space.

Definition 2.1. The joint distribution of two or more random variables X1, ..., Xn defined on the same
sample space refers to a characterization of their joint probabilities.

† For the remainder of this section, we only use two random variables X and Y. It is simple to extend to
cases of more than two RVs.
† The comma ’,’ is synonymous with ’and’.

We want to find P ((X,Y ) ∈ A), where A is any reasonable area in R2. The CDF of joint random variables
X,Y is

FX,Y (x, y) = P (X ≤ x and Y ≤ y)

= P (X ≤ x, Y ≤ y).
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We can also ask about the CDF of just X (otherwise called the marginal distribution of X):

FX(x) = P (X ≤ x)

= lim
y→∞

P (X ≤ x, Y ≤ y)

= lim
y→∞

FX,Y (x, y).

In general, the marginal distribution of X asks what happens when you keep Y unchanged, while con-
straining X to a certain parameter. We can also have a marginal distribution of a subset of random variables.

2.1 Discrete Joint Distribution

When all the random variables are discrete, we can also describe their distribution with a joint probability
mass function pX,Y :

pX,Y (x, y) = P (X = x, Y = y).

The marginal distribution of X can be calculated with:

pX(x) =
∑
y

P (X = x, Y = y)

=
∑
y

p(x, y).

2.2 Continuous Joint Distribution

Definition 2.2. When (X,Y ) are continuously distributed, then there exists a joint density function
fX,Y that is piecewise continuous, nonnegative, and integrates to 1, such that, for any reasonable region
A ∈ R2,

P ((X,Y ) ∈ A) =

∫∫
A

fX,Y (x, y)dydx.

For the CDF, we have

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

=

∫ x

x=−∞

∫ y

y=−∞
fX,Y (s, t)dtds.

The relationship between the joint density function and the CDF is as follows:

fX,Y =
∂2

∂x∂y
FX,Y (x, y).

For marginal distributions, we have (WLOG, we choose Y):

FY (y) = P ((X,Y ) ∈ (−∞,∞)× (−∞, y])

=

∫ y

y=−∞

∫ ∞
x=∞

f(s, t)dsdt.

Since the marginal CDF of Y is just a single variable, we can differentiate and get the following relationship
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to the marginal density function of Y :

fY (y) =
d

dy
FY (y)

=

∫ ∞
x=−∞

f(s, y)ds.

Remark 2.3. Clearly, there’s an analogue here with the discrete case. The marginal PMF of X is
∑
y p(x, y),

and the marginal density of X is
∫∞
y=−∞ f(x, t)dt. In both cases, we ”sum” over all possible values of the

other random variable(s) to get the marginal PMF / density function.

Warning 2.4. For univariate distributions, if there is no probability mass at any single point in the support
of the random variable, then the random variable is continuous.

But for joint distributions, we didn’t define continuous distributions in the same no-single-point-mass
way. Check the definition above; nowhere did we say anything about the single-point-mass thing.

In fact, it’s possible to have P ((X,Y ) = (x, y)) = 0 at every (x, y) ∈ A, and not have a continuous
distribution (i.e. there exists no density function that satisfies the conditions above). Consider the following
example:

Example 2.5. (X,Y ) is a point drawn uniformly at random from the unit circle U = {(x, y) ∈ R2 : ||(x, y)|| =
1}. Then of course, P ((X,Y ) = (x, y)) = 0 for any (x, y) ∈ U, so there is no mass at any single point. However,
P ((X,Y ) ∈ U) = 1, but U has zero area (it’s just a line in a 2D space). Hence we have

P ((X,Y ) ∈ U) = 1 6= 0 =

∫∫
U

f(x, y)dydx.

2.3 Conditional Distribution

Sometimes we want to ask about the distribution of X given exact knowledge of Y. For the discrete case,
the conditional mass of X | Y is

pX|Y (x | y) = P (X = x | Y = y)

=
P (X = x, Y = y)

P (Y = y)

=
pX,Y (x, y)

pY (y)
=

pX,Y (x, y)∑′
x pX,Y (x′, y)

.

For the continuous case, how do you define the conditional probabiltiy with P (Y = y) = 0 in the
denominator? For this, we approximate. I won’t list the details here, but we define the conditional density
of X | Y is

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
.

Based on the conditional distribution definitions, we can rehash the marginal distribution of Y (WLOG)
as

1. (discrete) pY (y) =
∑
x

pX,Y (x, y) =
∑
x

pY |X(y | x)pX(x), and

2. (continuous) fY (y) =

∫ ∞
x=−∞

fX,Y (x, y) =

∫ ∞
−∞

fY |X(y | x)fX(x).
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2.4 I.I.D. draws

Definition 2.6. Suppose X1, ..., Xn are independently and identically distributed (i.i.d) from a distribu-
tion with CDF F . Then since X1, ..., Xn are all independent, the joint distribution of X1, ..., Xn can be
characterized by

FX1,...,Xn(x1, ..., xn) =

n∏
i=1

FXi(xi).

† If X1, ..., Xn are i.i.d from a discrete distribution, then the joint PMF is the product of the individual
PMFs also.

2.5 Order Statistics

Definition 2.7. Suppose we have X1, ..., Xn i.i.d from a continuous distribution with CDF F and density
f. Then the order statistics are the ranked values of the random variables, denoted in the following way:

• X(1) denotes min{X1, ..., Xn}.

• X(2) denotes the next smallest value. ... ...

• X(n) denotes max{X1, ..., Xn}.

Warning 2.8. Just because the random variables are i.i.d does not mean that the order statistics are
independent. Notice that X(1) < X(2) always, so the two are not independent.

In general, if A < B for some random variables A,B, then the two are not independent (think about the
support argument).

Suppose for the rest of these propositions that we are dealing with random variables X1, ..., Xn that are
i.i.d from a distribution described by CDF F and density f.

Proposition 2.9. The distribution of X(1) is given by

FX(1)
(x) = 1− (1− F (x))n, and fX(1)

(x) = n(1− F (x))n−1 · f(t).

Proof. For the CDF, we have

FX(1)
(x) = P (X(1) ≤ x)

= 1− P (X(1) > x)

= 1− (P (X1 > x,X2 > x, ...,Xn > x))

= 1− P (X1 > x)P (X2 > x)...P (Xn > x)

= 1− (1− F (x))n.

The density follows by taking the derivative of the CDF.

Proposition 2.10. The distribution of X(n) is given by

FX(n)
(x) = F (x)n, and fX(n)

(x) = n(F (X))n−1 · f(x).
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Proof. For the CDF, we have

FX(n)
(x) = P (X(n) ≤ x)

= P (X1 ≤ x,X2 ≤ x, ...,Xn ≤ x)

= P (X1 ≤ x)P (X2 ≤ x)...P (Xn ≤ x)

= F (x)n.

The density follows by taking the derivative of the CDF.

Proposition 2.11. The distribution of X(k), where 1 < k < n, is given by

FX(k)
(x) =

n∑
j=k

(
n

j

)
[F (x)]j [1− F (x)]n−j , and

fX(k)
(x) =

n!

(r − 1)!(n− r)!
f(x)[F (x)]k−1[1− F (x)]n−k.

Proof. show later.

3 Expected Value

Definition 3.1. Let X be a random variable. Then the expected value of X (or mean of X) is the value
we expect to get from X in the long run. We denote the expected value as E(X), µX or µ.

1. If X is discrete, then

E(X) =
∑

x · pX(x), where pX is the PDF of X.

2. If X is continuous, then

E(X) =

∫ +∞

−∞
x · fX(x)dx, where fX is the density function of X.

If the sum / integral does not exist, then the expected value also does not exist.

Proposition 3.2. Let A be an event, and 1A be the indicator random variable. Then E(1A) = P (A).

Proof. We observe that 1A ∼ Bernoulli(P (A)). Hence,

E(Y ) = 0 · (1− P (A)) + 1 · P (A) = P (A).

Proposition 3.3 (Linearity). Let X1, ..., Xn be random variables, and let Y = a+ b1X1 + ...+ bnXn. Then

E(Y ) = a+ b1E(X1) + ...+ bnE(Xn).

Proposition 3.4. Let X,Y be random variables such that X ≤ Y almost surely. (This means that P (X >
Y ) = 0.) Then E(X) ≤ E(Y ).

Intuitively, if a random variable consistently spits out values that are less than another random variable,
then the average of the outputs from the former RV will obviously be less than that of the latter RV.

Proposition 3.5 (Functions of RV). Let X be a random variable, and let Y = g(X), where g is any function.
Then
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1. If X is discrete, then E(Y ) =
∑
x g(x) · pX(x).

2. If X is continuous, then E(Y ) =
∫∞
−∞ g(x) · fX(x)dx, where the limits of integration are determined by

the support of X (not Y ).

You can also just find the density / CDF of Y directly and compute the E(Y ) directly, but the method
above is usually easier.

Proposition 3.6 (Markov’s Inequality). Let X be a random variable supported on [0,∞) with mean µ.
Then for any t > 0, P (X ≥ t) ≤ µ

t . Intuitively, this means that the further a number is from the mean, the
less likely it is.

Proof. Define the random variable Y = t · 1X≥t. Then we have the following cases.

1. If X ≥ t, then Y = t ≤ X. So Y ≤ X.

2. If X < t, then Y = 0.. Since X is supported on [0,∞), X > 0. So Y ≤ X.

Hence Y ≤ X. Therefore, E(Y ) ≤ E(X) = µ. Now, we have

E(Y ) = t · P (Y = t) + 0 · P (Y = 0) = t · P (Y = t) = t · P (X ≥ t).

From this, we have t · P (X ≥ t) ≤ µ, so P (X ≥ t) ≤ µ
t .

4 Variance

Definition 4.1. Let X be a random variable. Then the variance of X gives a measure of how spread out
the values of X are from the mean of X (i.e. its expected value). The variance of X can be calculated by

Var(X) = E((X − µX)2).

The intuition is clear: (X − µX)2 is a function of X that gives a random variable of the distances of X’s
values from the mean, and we take the mean of this new random variable.

Given that Var is defined as the expected value of a function of a random variable, it is calculated by

Var(X) =
∑
x

(x− µX)2pX(x) (discrete),

Var(X) =

∫ ∞
−∞

(x− µX)2fX(x)dx (continuous).

Proposition 4.2. Let X be a random variable. Then Var(X) = E(X2)− E(X)2.

Proof. Since µX = E(X), we have

Var(X) = E((X − µX)2)

= E(X2 − 2XµX + µ2
X)

= E(X2)− 2µXE(X) + µ2
X

= E(X2)− E(X)2.

Proposition 4.3. For any random variable X and t > 0,

P (|X − µX | ≥ t) ≤
σ2
X

t2
.
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Proof. Define Y = (X − µX)2. Then E(Y ) = σ2
X . By Markov’s inequality, we get

P (|X − µX | ≥ t) = P (Y ≥ t2) ≤ σ2
X

t2
.

Proposition 4.4. Var(X) = 0 if and only if P (X = µX) = 1.

Proof. Intuitively, this makes sense because if all the probability weights are on the mean, then there is no
spread.

Suppose Var(X) = 0 and P (X = µX) 6= 1. Then for any ε > 0, P (|X − µ| ≥ ε) > 0. But by Chebyshev’s
inequality, P (|X − µ| ≥ ε) = 0, which is a contradiction.

The other direction is straightforward, just plug-n-chug.

Proposition 4.5. For any random variable X and any constants a, b,

Var(a+ bX) = b2Var(X).

Proof. Intuitively, if you shift the random variable by a and scale by b, then of course the spread of the
shifted RV will only be affected by the scaling factor.

Var(a+ bX) = E((a+ bX − E(a+ bX))2)

= E((a+ bX − (a+ bE(X)))2)

= E((b(X − E(X)))2)

= b2E((X − E(X))2) = b2Var(X).

5 Covariance and Correlation

Covariance and correlation are two ways to represent how much two random variables depend on each other.

Definition 5.1. Let (X,Y ) be random variables that are jointly distributed. Then

Cov(X,Y ) = E((X − µX) · (Y − µY )).

Definition 5.2. Let (X,Y ) be random variables that are jointly distributed. Then

Corr(X,Y ) =
Cov(X,Y )

σXσY
,

where σX and σY are the standard deviations of X and Y , respectively.

Remark 5.3. For any random variable X, Cov(X,X) = Var(X), and Corr(X,X) = 1.

Proposition 5.4. Corr is always between −1 and 1. In particular, Corr(X,Y ) = ±1 if and only if Y is a
linear transformation of X i.e. Y = aX + b for some a, b ∈ R, b 6= 0.
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Proof.

Corr(X,Y ) = ±1 ⇐⇒ Cov(X,Y )

σXσY

⇐⇒ E((X − µX)(Y − µY ))√
Var(X)

√
Var(Y )

⇐⇒ E((X − E(X))(a+ bX − (a+ bE(X))))

b ·Var(X)

⇐⇒ b · E((X − E(X))2)

b ·Var(X)

⇐⇒ b ·Var(X)

b ·Var(X)
= ±1.

Essentially, X and Y are completely correlated with each other if one is just a scaled and moved version
of the other.

Proposition 5.5. Cov(a+ bX, a′ + b′Y ) = bb′Cov(X,Y ), where a, a′, b, b′ ∈ R.

Proof.

Cov(a+ bX, a′ + b′Y ) = E((a+ bX − µa+bX)(a′ + b′Y − µa′+b′Y ))

= bb′E((X − E(X))(Y − E(Y ))) = bb′Cov(X,Y ).

Proposition 5.6. If b, b′ ∈ R such that they are both nonzero, then

Corr(a+ bX, a′ + b′Y ) = Corr(X,Y ) · sign(bb′).

Proof.

Corr(a+ bX, a′ + b′Y ) =
Cov(a+ bX, a′ + b′Y )

σa+bXσa′+b′Y

=
bb′Cov(X,Y )

|bb′|σXσY
= Corr(X,Y ) · sign(bb′).

Proposition 5.7. Var(X1 + ...+Xn) =
∑n
i=1 Var(Xi) + 2

∑
i<j Cov(Xi, Xj).

Proof. We prove only the n = 2 case. We have

Var(X + Y ) = E((X + Y − E(X)− E(Y ))2)

= E((X − E(X))2) + E((Y − E(Y ))2) + 2E((X − E(X))(Y − E(Y )))

= Var(X) + Var(Y ) + 2Cov(X,Y ).

Proposition 5.8. Cov(X1 + ...+Xn, Y1 + ...+ Yn) =
∑n
i=1

∑m
j=1 Cov(Xi, Yj).

11



Proof.

Cov(
∑
i

Xi,
∑
j

Yj) = E((
∑
i

Xi −
∑
i

E(Xi))(
∑
j

Yj −
∑
j

E(Yj)))

= E(
∑
i

∑
j

(Xi − E(Xi))(Y − E(Yj)))

=
∑
i

∑
j

E((Xi − E(Xi))(Y − E(Yj)))

=
∑
i

∑
j

Cov(Xi, Yj).

Proposition 5.9. Cov(X,Y ) = E(XY )− E(X)E(Y ).

Proof. † Notice that Cov(X,X) = Var(X) gives the shortcut formula for variance.

Cov(X,Y ) = E((X − E(X))(Y − E(Y )))

= E(XY )− E(X)E(Y ).

6 Conditional Expectation / Variance

Suppose we have jointly distributed random variables (X,Y ). Then the conditional expectation E(X | Y =
y) asks what the expected value of X is, given that Y = y.

Definition 6.1 (Conditional Expectation). In the discrete case, we have

E(X | Y = y) =
∑
x

x · pX|Y (x | y), or

E(g(X) | Y = y) =
∑
x

g(x) · pX|Y (x | y).

In the continuous case, we have

E(X | Y = y) =

∫
x

x · fX|Y (x | y)dx, or

E(g(X) | Y = y) =

∫
x

g(x) · fX|Y (x | y)dx.

Notice the similarity between these conditional expectation definitions, and the regular expectation def-
initions.

Definition 6.2 (Conditional Variance). We can also define conditional variance: given that Y = y, what is
the variability among the corresponding X values?

Variance is given by

Var(X | Y = y) = E((X − E(X | Y = y))2 | Y = y)

= E(X2 | Y = y)− E(X | Y = y)2.

12



Remark 6.3. The intuition is that we average over all of (X,Y ), and remove the pairs that are not Y = y,
and observe the average of the X values remaining.

Theorem 6.4 (Law of Total Expectation). For jointly distributed (X,Y ),

E(Y ) = EX(EY |X(Y | X)).

Intuition. The intuition is that EY |X(Y | X = x) is a function of X (when X changes, then the expected
value of the Y ’s that correspond to the X values must necessarily change). Taking the expected value of all
the X’s gives us the expected value of Y.

Theorem 6.5 (Tower Law for Probability). For any event A and any random variable X,

P (A) = E(P (A | X)).

Proof. Intuitively, the weighted average over every probability of A given any value of X should give the
probability of A itself. For the proof, consider 1A. Then

1A ∼ Bernoulli(P (A)).

Hence, it follows that 1A | X ∼ Bernoulli(P (A | X)). Therefore, by the tower law for expectation, we
have

E(1A) = E(E(1A | X)) = E(P (A | X)).

Theorem 6.6 (Law of Total Variance). For jointly distributed (X,Y ), we have

Var(Y ) = E(Var(Y | X)) + Var(E(Y | X)).

In particular, this means E(Var(Y | X)) ≤ Var(Y ).

Proof. First, we explain what this formula means. This formula divides variance into two summands. In
particular, this means that the variability of a random variable comes from two sources:

1. (E(Var(Y | X))) The variability of Y even if X is known, and

2. (Var(E(Y | X))) the variability of Y as X changes.

Furthermore, E(Var(Y | X)) ≤ Var(Y ) follows because variance is always nonnegative, so the second
summand is always nonnegative. This inequality suggests that on average, the variability of Y conditioned
on X is less than the variability of Y outright.

For the proof, we have

Var(Y ) = E(Y 2)− E(Y )2

= E(E(Y 2 | X))− E(E(Y | X))2

= E(E(Y 2 | X)− E(Y | X)2) + E(E(Y | X)2)− E(E(Y | X))2

= E(Var(Y | X)) + Var(E(Y | X)).

13



7 Independence

Definition 7.1. Two random variables X,Y are independent if for all (x, y), FX,Y (x, y) = FX(x)FY (y). We
denote independent random variables as X⊥Y.

Proposition 7.2. In both discrete and continuous cases, X⊥Y is equivalent to, for all x, y,

1. FX,Y (x, y) = {some function of X} · {some function of Y }

2. P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

If X⊥Y are independent, then {possible (X,Y) values} = {possible X values}×{possible Y values.} (Use
the contrapositive to show non-independence.)

Proposition 7.3. In the discrete case, X⊥Y is also equivalent to, for all x, y,

1. pX,Y (x, y) = pX(x)pY (y)

2. pX,Y (x, y) = (some function of X) · (some function of Y).

For conditional distribution, X⊥Y is equivalent to, for all x, y, pX|Y (x | y) = pX(x).

Proposition 7.4. In the continuous case, X⊥Y is also equivalent to, for all x, y,

1. fX,Y (x, y) = fX(x)fY (y)

2. fX,Y (x, y) = (some function of X) · (some function of Y ).

For conditional distribution, X⊥Y is equivalent to, for all x, y, fX|Y (x | y) = fX(x).

Proposition 7.5. If X⊥Y , then E(X · Y ) = E(X) · E(Y ). In particular, if X⊥Y , then for any functions
g, h, g(X)⊥h(Y ), so E(g(X) · h(Y )) = E(g(X)) · E(h(Y )).

Proof.

E(X · Y ) =

∫
x

∫
y

x · y · fX,Y (x, y)dydx

=

∫
x

∫
y

(x · fX(x))(y · fY (y))dydx

=

(∫
x

(x · fX(x))dx·
)
·
(∫

y

(y · fY (y))dy

)
= E(X) · E(Y ).

Proposition 7.6. If X⊥Y , then Cov(X,Y ) = Corr(X,Y ) = 0.

Proof. Since Cov(X,Y ) = E(XY ) − E(X)E(Y ), and E(X)E(Y ) = E(XY ) because X⊥Y , it follows that
Cov(X,Y ) = 0. Therefore, Corr(X,Y ) = 0.

This also makes intuitive sense because two independent variables should have nothing to do with each
other, which means that they are not correlated.

Proposition 7.7. If X1, ..., Xn are mutually independent, then

Var(X1 + ...+Xn) = Var(X1) + ...+ Var(Xn).

Proof. This follows immediately from Proposition 5.7 and Proposition 7.6.

14



8 Bayesian Statistics

In many statistical inference settings, we observe some random data and try to learn something about
the underlying parameters. However, in Bayesian statistics, we assume that the underlying parameters
themselves are random variables i.e. sampled from a distribution.

Definition 8.1 (Bayesian statistics definitions). We will refer to the observed random variable as X and
its underlying parameter as λ.

1. Prior distribution: the distribution that we believe the underlying parameter is sampled from.

2. Posterior distribution: the conditional distribution of λ given X.

3. Posterior mean: the conditional expected value of λ given X.

4. Posterior mode: the mode of the conditional distribution (a.k.a. posterior distribution).

5. Likelihood: the conditional distribution of X given λ.

9 Rejection Sampling

Sampling from distributions can be difficult. But here are some of the ways that we know of to sample from
distributions:

1. Naturally occurring processes e.g. coin flipping model coincides with binomial distribution

2. Taking a discrete PMF p, and a random number generator U ∼ Uniform[0, 1]. (basically a partition
of [0, 1] by probabilities)

• If U ≤ p(x1), then X = x1.

• If p(x1) < U ≤ p(x2), then X = x2... and so on.

3. If a closed form CDF F is known, then taking U ∼ Uniform[0, 1], and setting X = F−1(U).

But how can you sample from a distribution that isn’t easy to sample from, or you don’t know how to
sample from it? The answer is rejection sampling.

Theorem 9.1. Let q(x) be a PMF/PDF that we know how to sample from. Suppose we want to sample
from a distribution with the PMF/PDF

p∗(x) = (normalizing constant) · h(x).

Also, set C = max
x∈support(h)

h(x)

q(x)
(or any upper bound for that matter). Then sampling from the hierarchical

model {
X ∼ (distribution with PDF/PMF q)

A | X ∼ Bernoulli
(

h(x)
C·q(x)

) ,

and selecting only those X values for which A = 1, the resulting X values will follow the distribution defined
by p∗. Furthermore, C tells about the efficiency of the sampling, i.e. how often X values are ”accepted”.
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Proof. We show for the discrete case only. The continuous case follows similarly by using the ε argument.
Since we only accept the X values for which A = 1, consider P (X = x | A = 1). We have

P (X = x | A = 1) =
P (A = 1 | X = x)P (X = x)

P (A = 1)

=

h(x)
C·q(x) · q(x)∑
x′

h(x′)
C·q(x′) · q(x′)

= (normalizing constant) · h(x) = p∗(x).

Furthermore, C tells about the efficiency of sampling. We have

P (A = 1) =
∑
x′

h(x′)

C · q(x′)
· q(x′) =

1

C

∑
x′

h(x′).

For low values of C, the sampling efficiency is high, while for high values of C, the sampling efficiency is low.
This makes sense because C tells us how large the discrepancy between our ”target” distribution, and the
distribution that we know how to sample from is.

10 Frequentist Inference

10.1 Frequentist vs. Bayesian

The scenario is that we have random variable X, with X dependent on some parameter θ.

1. (Frequentist) The assumption is that θ is fixed.

2. (Bayesian) The assumption is that θ is random and sampled from a prior distribution.

10.2 Confidence intervals

Question 10.1. Which values of θ are plausible in light of the data?

The method is as follows. After observing X, consider a range [lower bound(X),upper bound(X)] such
that for any possible θ,

P (lower bound(X) ≤ θ ≤ upper bound(X)) ≥ 1− α, where α = tolerate rate.

Warning 10.2. Although θ is not a random variable, this probability is well-defined because the probability
is actually based on X. In other words, the range defined does not give the probability that θ falls inside
the range. Rather, the probability refers to the reliability of the estimation procedure.

Remark 10.3. You can also manipulate the inequality above to make it an inequality about X assuming that
θ is a particular value. In other words, something like

P (function1(θ) ≤ X ≤ function2(θ)) ≥ 1− α.

This means that you have that the probability that X lies in between two values assuming the value of
θ is greater than 1− α, which gives the ”confidence level” in our estimate of θ.

Remark 10.4. Suppose 1000 researchers run the same experiment, and each generates a 1 − α confidence
interval Xi ± εi. Then since the confidence level gives a probability on the estimation procedure, 1− α of
the 1000 intervals generated will contain θ. But whether or not µ falls in the interval is unknown to every
researcher.
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10.3 Hypothesis testing

Question 10.5. For a particular value of θ, is this value plausible in light of the data?

The method is as follows. We are interested in the following hypotheses:

1. Null hypothesis: θ = θ0

2. Alternative hypothesis: θ 6= θ0 (or θ > θ0, or θ < θ0)

The goal is to disprove the null hypothesis. Assuming that the null hypothesis is true i.e. θ = θ0,
construct a range of values R such that

P (X ∈ R) ≥ 1− α, where α = tolerate rate.

Note that P is the probability over X parameterized by θ0, as we assumed that the null hypothesis is true.
Then the decision making process is as follows: if after observing X

1. If we observe a value that falls in R, then we do not reject the null hypothesis.

2. If we observe a value that does not fall in R, then we reject the null hypothesis.

From the decision making procedure, we have

P (X 6∈ R) = 1− P (X ∈ R) ≤ α.

Since an observed value that does not fall in R immediately leads to a rejection of the null, and R was
based on the assumption that θ = θ0, we have a ≤ α chance of incorrectly rejecting the null hypothesis i.e.
concluding that θ 6= θ0 when θ is actually equal to θ0.

11 Central Limit Theorem & Applications

Definition 11.1. Let X1, X2, ... be i.i.d from a distribution with mean µ and variance σ2. Then we define

1. Sample sum Sn = X1 + ...+Xn, and E(Sn) = nµ and Var(Sn) = nσ2.

2. Sample mean X̄ = Sn
n , and E(X̄) = µ and Var(X̄) = σ2

n .

3. Sample variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2, and E(S2) = σ2.

Proposition 11.2. The sample mean and sample variance are unbiased estimators i.e. E(X̄) = µ and
E(S2) = σ2.

Proof. For the sample mean, we have

E(X̄) =
1

n
E(X1 + ...+Xn) =

1

n
(E(X1) + ...+ E(Xn)) = µ.
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For the sample variance, we have

E(S2) = E

(
1

n− 1

n∑
i=1

(Xi − X̄)2

)

=
1

n− 1

(
n∑
i=1

E(((Xi − µ)− (X̄ − µ))2

)

=
1

n− 1

(
n∑
i=1

E((Xi − µ)2)

)
− n

n− 1
E((X̄ − µ)2) (because cross covariance is zero)

=
n

n− 1
σ2 − n

n− 1
· σ

2

n
= σ2.

Theorem 11.3 (Central Limit Theorem). If X1, X2, ... be i.i.d from a (reasonable) distribution, then for
sufficiently large n (usually n > 30 suffices),(

Distr. of Zn =
Sn − nµ
σ
√
n

)
≈ N(0, 1).

This is to say that

lim
n→∞

P (Zn ≤ x) ≈ Φ(x), where Φ is the CDF of N(0, 1).

Furthermore, since Sn, X̄ , and Zn are linear transformations of each other, we get

(Distr. of Sn) ≈ N(nµ, nσ2), and (Distr. of X̄) ≈ N
(
µ,
σ2

n

)
.

Proposition 11.4 (Standardization). Let Z ∼ N(µ, σ2). Then Z−µ
σ ∼ N(0, 1).

Proof. Linear transformations of normal distributed random variables are also normally distributed. More
specifically, aZ + b ∼ N(aµ+ b, a2σ2). Hence we have

Z − µ
σ

=
1

σ
Z − µ

σ
∼ N(0, 1).

The CLT, combined with the standardization property, gives a powerful tool. Consider the following
example.

Example 11.5. Let X ∼ Binom(n, p). Then X = X1 + ...+Xn, where Xi ∼ Bernoulli(p) indicates success
on the ith trial. We can use the CLT and standardization to give an estimate for the probability, assuming
of course that n is sufficiently large.

What is the probability that we get no more than 10 heads i.e. P (X ≤ 10)? We know that E(Xi) = p
and Var(Xi) = p(1− p). By the CLT, X is approximately normally distributed (X is the sample sum here).
By standardization, we have

P (X ≤ 10) = P

(
X − np√
np(1− p)

≤ 10− np√
np(1− p)

)
≈ Φ

(
10− np√
np(1− p)

)
.
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Theorem 11.6. Let X ∼ N(µ1, σ
2
1), and Y ∼ N(µ2, σ

2
2), and suppose X⊥Y . Then X + Y ∼ N(µ1 +

µ2, σ
2
1 + σ2

2).

Combined with the CLT, this means if X⊥Y and X,Y ≈ (normally distributed), then X+Y ≈ (normally
distributed) also.

Here is the motivating theorem:

Theorem 11.7. If X1, ..., Xn are i.i.d. from N(µ, σ2), then

1. X̄ ∼ N(µ, σ
2

n )

2. n−1
σ2 · S2 ∼ χ2

n−1

3. X̄−µ
S√
n

∼ tn−1.

4. X̄⊥S2.

Furthermore, if X1, ..., Xn are i.i.d. from any distribution with mean µ and variance σ2, the above
statements hold approximately for the appropriate random variables.

Essentially, the point is that you can construct random variables that approximately follow certain
distributions.

11.1 Chi-Square Distribution

In the section above, we asked how accurately X̄ can estimate µ. Here, we ask how accurately other random
variables can estimate other information, and how these random variables are distributed.

Definition 11.8 (Chi-Square Distribution). Let Z1, ..., Zn be i.i.d. from N(0, 1). Define V = Z2
1 + ...+Z2

n.
Then V ∼ χ2

n. The density of χ2
n is

f(x) =
1

2
n
2 Γ
(
n
2

)xn2−1e−
x
2 for x ≥ 0.

Also, E(V ) = n, and Var(V ) = 2n. Note that χ2
n = Gamma(n2 ,

1
2 ).

Proposition 11.9. If X1, ..., Xn be i.i.d. from N(µ, σ2), then

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n.

Proof. Standardize all Xi’s and use the definition of the chi-square distribution.

Proposition 11.10. If X1, ..., Xn be i.i.d. from N(µ, σ2), then

n∑
i=1

(
Xi − X̄

σ

)2

∼ χ2
n−1.

This is equivalent to saying

n− 1

σ2
· S2 ∼ χ2

n−1.

This means that an appropriately scaled sample variance is chi-square distributed with n − 1 degrees of
freedom.

19



Proof. We prove only for the case n = 2. We have

1

σ2
((X1 − X̄)2 + (X2 − X̄)2 =

1

σ2

((
X1 −X2

2

)2

+

(
X2 −X1

2

)2
)

=

(
X1 −X2√

2σ2

)2

.

Since X1, X2 are i.i.d. from N(µ, σ2), X1 −X2 ∼ N(0, 2σ2). Therefore, by standardizing, we have

n− 1

σ2
· S2 =

(
X1 −X2√

2σ2

)2

∼ χ2
1.

See proposition right before this one.

11.2 t-Distribution

Definition 11.11 (t-distribution). Let Z ∼ N(0, 1), and V ∼ χ2
n, and Z⊥V . (Note that V can be con-

structed by taking i.i.d. standard normal RVs). Then

T =
Z√
V
n

∼ tn.

The density of tn is

f(x) = (normalizing constant) ·
(

1 +
x2

n

)−n+1
2

for x ∈ R.

Proposition 11.12. For small n, t distribution has heavy tails i.e. P (T ≥ x) is much larger than 1−Φ(x).
Furthermore, as n→∞, tn → N(0, 1).

Proposition 11.13. Let X1, ..., Xn be i.i.d. from N(µ, σ2). Then

T =
X̄ − µ

S√
n

∼ tn−1.

In general, the χ2 distribution and t2 distribution are concerned with how the distributions of the sample
mean / sample variance can provide information about the actual mean / variance. First, we explore what
information we can find about the mean through the sample mean.

11.3 Inferences: Sample Mean

Question 11.14. How accurately can X̄ estimate µ?

This question can be represented in two ways:

1. P (|X̄ − µ| > (smth. with limit 0)) ≤ ε?
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Let ε > 0. Then let z = Φ−1(1− ε
2 ). Then we have

P (|X̄ − µ| > z · σ√
n

) = P (X̄ − µ > z · σ√
n

) + P (X̄ − µ < −z · σ√
n

)

= P (
X̄ − µ

σ√
n

> z) + P (
X̄ − µ

σ√
n

< −z)

≈ (by CLT) 2(1− Φ(z))

= 2(1− Φ(Φ−1(1− ε

2
))) = ε.

Hence, as ε→ 0, X̄ becomes an apt approximation of µ.

2. P (|X̄ − µ| > ε) ≤ (smth. with limit 0)?

Unfortunately, the CLT cannot be applied in this step in the case that X̄ is NOT normal. The CLT
can only be applied when the parameter in the probability statement is fixed.

However, we can estimate this with Chebyshev’s inequality. We have

P (|X̄ − µ| > ε) ≤ Var(X̄)

ε2
=

σ2

nε2
.

This scales O( 1
n ), so hence we obtain the same conclusion as before.

11.3.1 Frequentist

The answer to the question above can be used to construct confidence intervals. However, the answer will
change depending on whether or not the true variance is known - observe that the (1− ε) confidence interval
above depends on σ, which may not be known.

Theorem 11.15. Suppose X1, ..., Xn are i.i.d. from N(µ, σ2). Let the tolerance / error rate be α > 0. Then

1. If σ2 is known, then let zα/2 = Φ−1(1− α
2 ). Then X̄ ± zα/2 · σ√n is a (1−α) confidence interval for µ,

or

P (µ ∈ X̄ ± zα/2 ·
σ√
n

) = 1− α.

2. If σ2 is unknown, then suppose F−1
tn−1

is the inverse CDF of tn−1. Let tα/2 = F−1
tn−1

(1 − α/2). Then

X̄ ± tα/2 · S√
n

is a (1− α) confidence interval for µ, or

P (µ ∈ X̄ ± tα/2 ·
S√
n

) = 1− α.

The same results hold approximately if X1, ..., Xn are i.i.d. from any distribution with mean µ and
variance σ2.

Proof. The proof for when σ2 is known is the same as the question above. If σ2 is unknown, use the same
method from noticing that

X̄ − µ
S√
n

∼ tn−1, as shown in a proposition above.
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11.3.2 Bayesian

Definition 11.16. Let the tolerate / error rate be α > 0. After observing X, construct a range R such that
for the parameter θ,

P (θ ∈ R | X) = 1− α.

Then R is the 1−α credible interval. Note that this probability is defined in the domain of the posterior
probability.

Remark 11.17. The credible interval differs from the confidence interval because the former gives the literal
probability that the parameter θ falls within the interval, while the confidence interval gives the confidence
that θ falls within the interval.

Theorem 11.18. Let the tolerance / error rate be α > 0. Then

1. If σ2 is known, then based on a µ0 and σ2
0 of our choosing, define the hierarchical model{

µ ∼ N(µ0, σ
2
0)

X1, ..., Xn | µ ∼i.i.d N(µ, σ2)
.

Then as n→∞, the 1− α credible interval approaches

P (µ ∈ X̄ ± zα/2 ·
σ√
n
| X1, ..., Xn) = 1− α.

This interval aligns with the frequentist 1− α confidence interval.

2. If σ2 is unknown, then based on a τ, λ, and µ0 of our choosing, define the hierarchical model
(1/σ2) ∼ Gamma(τ, λ)

µ | σ2 ∼ N(µ0, σ
2)

X1, ..., Xn | µ, σ2 ∼i.i.d. N(µ, σ2)

.

Then as n→∞, the 1− α credible interval approaches

P (µ ∈ X̄ ± tα/2 ·
S√
n
| X1, ..., Xn) = 1− α.

This interval aligns with the frequentist 1− α confidence interval.

Proof. We will not go into detail. On the surface level, when σ2 is known, the posterior distribution ends
up being a normal distribution where for large enough n,

N(≈ X̄,≈ σ2

n
).

Then follow the same logic as in the confidence interval case.

The logic is the same for the σ2 unknown case, except that the posterior distribution ends up being a
t2τ+n distribution.

11.4 Multiple Testing Problem

The multiple testing problem is making decisions on questions or conditions on your experiment based on
inferences you have already made.
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12 Parameter Estimation

We saw above how X̄ and S2 can be estimates of true µ and true σ2, and how you can substitute them in
to generate confidence / credible intervals. But what about the general case? Can you make estimates of
any kind of parameter - not just for µ or σ2?

Notation 12.1. Let X1, ..., Xn ∼i.i.d. from some Distribution(θ), where θ ∈ Θ ⊂ Rn is unknown. We denote

f(x | θ) = Distribution(θ).

For example, Exponential(λ) = f(x | λ). In other words, each of the Xi’s are sampled from f(x | θ).
Remark 12.2. If in frequentist framework, then f(x | θ) does not represent a conditional probability, since θ
is assumed to be fixed. But in Bayesian framework, f(x | θ) literally represents a conditional probability.

Definition 12.3 (Family of densities). Suppose X1, ..., Xn ∼i.i.d. f(· | θ). Then f(· | θ) is called the family
of densities.

Definition 12.4 (Estimator). Suppose X1, ..., Xn ∼i.i.d. f(· | θ). Let θ̂ : Rn → Θ, where θ̂ maps the data

(X1, ..., Xn) to an estimate of the parameter θ. We call θ̂ an estimator of θ.

We say θ̂ is unbiased if E(θ̂) = θ. For example, X̄ and S2 are unbiased estimators of µ and σ2, respectively.

Notice that θ̂ has no dependence on the true parameter θ; θ̂ only has the data X1, ..., Xn as input.

Definition 12.5 (Sampling Distribution). We call the distribution of θ̂ the sampling distribution.

Recall that the output of θ̂ varies depending on the inputs (X1, ..., Xn), which are i.i.d. from f(· | θ).
Hence, θ̂ is also a random variable, and has a distribution that actually depends on θ, unlike the estimator
function itself. The true parameter θ is fixed, and (X1, ..., Xn) are generated depending on the fixed θ.

Definition 12.6 (Standard Error). Any estimate of the standard deviation of θ̂, which is distributed ac-
cording to the sample distribution, is called the standard error.

The true standard deviation of θ̂ may depend on θ, but the standard error need not depend on θ.

Definition 12.7 (Mean Squared Error (MSE)). Let θ ∈ Θ ⊂ R, and let θ̂ be an estimator of θ. Then fixing
θ – so that we have a sampling distribution – we call

MSE = E((θ̂ − θ)2).

The MSE is “how good of an estimate θ̂ is of θ”.

Definition 12.8 (Bias). We call (E(θ̂)− θ)2 the bias.

Proposition 12.9.

1. If θ̂ is unbiased, then MSE = Var(θ̂).

2. If θ̂ is biased, then MSE = (E(θ̂)− θ)2 + Var(θ̂).

Proof.

1. Since E(θ̂) = θ, we see that MSE = E((θ̂ − θ)2) = E((θ̂ − E(θ̂))2) = Var(θ̂).

2. We have that

MSE = E((θ̂ − θ)2)

= E(((E(θ̂)− θ) + (θ̂ − E(θ̂)))2)

= (E(θ̂)− θ)2 + E((θ̂ − E(θ̂))2)

= (E(θ̂)− θ)2 + Var(θ̂).
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Remark 12.10 (Bias / Variance tradeoff). The previous proposition tells that the magnitude of the MSE

comes from two sources – the bias and the variance of θ̂. Usually, one is obtained at the expense of another
– low bias / high variance, or high bias / low variance.

If an estimator is unbiased (0 bias), but has high variance, then clearly it isn’t that great of an estimate
of θ. The same is true for the other case.

12.1 Making Estimators

How can you make reasonably good estimators?

12.1.1 Method of Moments

Suppose X1, ..., Xn ∼i.i.d. f(· | θ). Let X ∼ f(· | θ).

• If θ ∈ R, then

1. Compute E(X) as a function of θ.

2. Compute the sample mean X̄ = 1
n

∑n
i=1Xi.

3. Solve the equation E(X) = X̄ for θ, and set this θ = θ̂.

• If θ ∈ Rk, then

1. Compute E(X), E(X2), ..., E(Xk) as functions of θ.

2. Compute 1
n

∑n
i=1Xi,

1
n

∑n
i=1X

2
i , ...,

1
n

∑n
i=1X

k
i .

3. Solve the equations

E(X) =
1

n

n∑
i=1

Xi, E(X2) =
1

n

n∑
i=1

X2
i , ..., E(Xk) =

1

n

n∑
i=1

Xk
i

for θ, and set this θ = θ̂.

12.1.2 Maximum Likelihood Estimation

Notation 12.11. We will denote the true parameter value as θ0. Any other possible parameter value will
be denoted as θ.

Definition 12.12. Suppose X1, ..., Xn ∼i.i.d. f(· | θ). Let X ∼ f(· | θ). Then the likelihood is the joint
density of (X1, ..., Xn) as a function of θ, or

n∏
i=1

f(Xi | θ).

Similarly, the log likelihood is the log of the likelihood, or

n∑
i=1

log(f(Xi | θ)).
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Theorem 12.13 (Maximum Likelihood Estimation (MLE)). Set θ̂ equal to the value of θ that maximizes
the likelihood (or the log likelihood), i.e.

θ̂ = argmaxθ∈Θ

n∏
i=1

f(Xi | θ), or θ̂ = argmaxθ∈Θ

n∑
i=1

log(f(Xi | θ)).

Intuitively, the value of θ that maximizes the likelihood (or log likelihood) should be a good estimator of
θ0, because presumably the values of (X1, ..., Xn) were picked from an area of high probability.

Definition 12.14 (Fisher information). The Fisher information is

I(θ) = EX

((
∂

∂θ
log(f(X | θ))

)2
)

= EX

(
− ∂2

∂θ2
log(f(X | θ))

)
.

The second equality follows from regularity conditions.

Theorem 12.15. Under regularity conditions, the Fisher information determines the (approximate) variance
of the MLE, which gives an idea of the MLE’s accuracy.

Half-formally, if X1, ..., Xn ∼i.i.d. f(· | θ0), and θ̂ is the MLE, then under regularity conditions,

(Distr. of θ̂) ≈ N
(
θ0,

1

nI(θ0)

)
.

Full-formally, under regularity conditions,(
Distr. of

√
nI(θ0) · (θ̂ − θ0)

)
→ N(0, 1) as n→∞.

This means that for any x ∈ R,

lim
n→∞

P
(√

nI(θ0) · (θ̂ − θ0) ≤ x
)

= Φ(x).

If θ0 is unknown, then the same statements hold with θ̂ in place of θ0, i.e.

lim
n→∞

(
Distr. of

√
nI(θ̂) · (θ̂ − θ0)

)
= N(0, 1), and

lim
n→∞

P

(√
nI(θ̂) · (θ̂ − θ0) ≤ x

)
= Φ(x).

By this theorem, high Fisher information implies lower variance, and hence better ”accuracy” of the
estimator.

The theorem above allows us to create confidence intervals for the true parameter using the MLE. In
particular, given the critical zα/2 = Φ−1(1− α

2 ), the asymptotic normality of the MLE gives that

P

(∣∣∣∣√nI(θ̂) · (θ̂ − θ0)

∣∣∣∣ > zα/2

)
≈ α, so P

θ0 ∈ θ̂ ± zα/2 ·
1√
nI(θ̂)

 ≈ 1− α.

In short, this gives the 1 − α confidence interval for θ0 based on the MLE estimator and its asymptotic
normality property.

Question 12.16. How well does the performance of the MLE stack up against other estimators?
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The concept of ’well’ or ’goodness’ can be approached from the perspective of the MSE, which is comprised
of bias and variance. From the above, the MLE is

1. unbiased (asymptotically), and

2. variance approaches 1
nI(θ0) (asymptotically).

But if we “fix” one of the two components of the MSE, we arrive at this following lemma.

Lemma 12.17 (Cramer-Rao Inequality). If θ̂ is an unbiased estimator i.e. E(θ̂) = θ for any θ, then

Var(θ̂) ≥ 1

nI(θ0)
.

This means that given an unbiased estimator, the variance of the MLE (asymptotically) is at least as good
as the variance of the unbiased estimator.

Remark 12.18. However, the Cramer-Rao inequality does not imply that the MLE is the optimal estimator;
there may be cases where we are willing to trade bias for variance.

12.2 Bayesian Inference

Question 12.19. How can you come up with estimators in the Bayesian framework?

Recall the hierarchical model: {
θ ∼ g(θ)

X1, ..., Xn | θ ∼i.i.d. f(· | θ)
.

Then the posterior PMF/density is

h(θ | X1, ..., Xn) =
f(X1, ..., Xn | θ) · g(θ)

marginal distr. of X1, ..., Xn

= (term that doesn’t depend on θ) · g(θ) ·
n∏
i=1

f(Xi | θ).

Knowing the posterior PMF/density allows us to calculate potential estimators and credible intervals.

12.2.1 Potential estimators & Accuracy

1. Posterior mean i.e. θ̂ = E(θ | X1, ..., Xn).

2. Posterior mode i.e. θ̂ = argmaxθ∈Θ h(θ | X1, ..., Xn).

Question 12.20. How do we measure performance of estimator in Bayesian framework?

The answer isn’t as simple as using the MSE, because the expected value of the MSE does not take into
account the randomness of the parameter; in other words, the MSE is a performance metric for an estimator
into the frequentist framework.

Definition 12.21 (Bayes’ risk). The performance metric of an estimator in the Bayesian framework.

Definition 12.22 (Bayes’ rule). The estimator θ̂ that minimizes the Bayes’ risk.

There exist different performance metrics in the Bayesian framework, so we highlight pertinent ones
below.
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1. The squared loss Bayes’ risk is

E((θ̂ − θ)2) = Emarg. distr. of X1,...,Xn(Eθ|X1,...,Xn((θ̂ − θ)2 | X1, ..., Xn)).

2. The absolute loss Bayes’ risk is

E(|θ̂ − θ|) = Emarg. distr. of X1,...,Xn(Eθ|X1,...,Xn(|θ̂ − θ| | X1, ..., Xn)).

3. The 0/1 loss Bayes’ risk is used in the discrete setting, and it measures performance by asking how
likely it is that the estimator will not equal the true parameter value.

E(1θ̂ 6=θ0) = P (θ̂ 6= θ).

Theorem 12.23. For each of the Bayes’ risks defined above, the according Bayes’ rules are

1. Squared loss → posterior mean.

2. Absolute loss → posterior median.

3. 0/1 loss → posterior mode.

Proof. We show only the squared loss case. Observe that

E((T − t)2) = Var(T − t) + E(T − t)2

= Var(T ) + (E(T )− t)2.

Hence E((T − t)2) is minimized by setting t = E(T ). In the same way, setting θ̂ = E(θ | X1, ..., Xn)
minimizes the squared loss.

12.2.2 Credible interval

Recall the definition of a credible interval: The 1− α credible interval I is the interval such that

P (θ ∈ I | X1, ..., Xn) = 1− α.

In other words, I is the interval such that the probability that the parameter lies in I given the data X1, ..., Xn

is 1− α.

There exist two methods of constructing a 1 − α credible interval: the equal-tailed interval & the high-
posterior density interval. The two are equivalent if the posterior density is symmetric and single-peaked
(i.e. unimodal).

1. (Equal tailed interval) Let Fpost be the CDF of the posterior distribution, and assume Fpost is
continuous. Then the bounds of the 1− α equal tailed credible interval I are given by

F−1
post

(α
2

)
≤ θ ≤ F−1

post

(
1− α

2

)
.

2. (High-posterior density interval) Let I be the interval such that

{θ : f(θ | X1, ..., Xn) ≥ c}, where c is chosen such that P (I) = 1− α.
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13 Hypothesis Testing

Given data from a parametric model i.e. data from f(· | θ) with unknown θ, we set up a binary model,
where we use data to choose between two statements on θ.

Definition 13.1. Let H0, H1 be two statements on θ. H0 is called the null hypothesis, and H1 is called
the alternative hypothesis. If a hypothesis proposes specific values for θ, then it is simple. If a hypothesis
proposes a range of values for θ, then it is composite.

For example, H0 = 1 is simple, while H1 6= 1 is composite. H0 = 1 is simple, and H1 = 2 is simple also.

Definition 13.2 (Hypothesis Test). A hypothesis test is a function that maps from the observed values to
{H0, H1}.

Definition 13.3 (Type I, Type II, Power errors).
The notation is in parentheses. The language of “selecting” refers to the output of the hypothesis test.

1. Type I error(α) = probability of selecting H1 given that H0 is true.

2. Type II error(β) = probability of selecting H0 given that H1 is true.

3. Power = probability of selecting H1 given that H1 is true = 1− β.

Definition 13.4 (Test statistic). The test statistic is a function from the observed data to a single value
such that a decision can be made (i.e. choosing H0 or H1).

Definition 13.5 (Null distribution). The distribution of the test statistic, assuming that the null hypothesis
is true.

Definition 13.6 (Rejection region). The rejection region consists of the values of the test statistic for which
we reject the null hypothesis.

13.1 Designing hypothesis tests

In practice, the general recipe for designing hypothesis tests is as follows:

1. Choose a test statistic T and an error rate α.

2. Set a rejection region R such that PH0
(T ∈ R) = α.

3. If applicable, compute PH1(T 6∈ R) = β.

13.1.1 Conventions for choosing null/alternative hypothesis

• If one hypothesis is simple and the other is composite, set the null to be the simple hypothesis.

• If the result we want to prove is likely true, then set it as the alternative hypothesis. This is because
our goal in hypothesis testing is to disprove/reject the null.

13.1.2 Common types of rejection regions

1. One-sided rejection regions : (c,∞), [c,∞), (−∞, c), (−∞, c].

2. Two-sided rejection regions : (−∞, c1) ∪ (c2,∞), (−∞, c1] ∪ [c2,∞).

Example 13.7. Suppose we have X ∼ Exponential(λ). We want to test H0 : λ = 20 and H1 : λ < 20.
Following the steps of the the general recipe we reason:

1. Set X itself as the test statistic, and let α = 0.1.
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2. Since the probability of getting a certain value generally increases as λ decreases, choose a one-sided
rejection region (c,+∞) such that

P (X ∈ (c,+∞) | λ = 20) = P (X > c | λ = 20) = 0.1.

Using the inverse CDF of the exponential distribution, we get R = (0.1151,∞). Hence if X ≤ 0.1151,
choose H0; otherwise, choose H1. In sum, we get the following hypothesis test:{

H0 if X ≤ 0.1151

H1 otherwise.

3. Choose arbitrary values for λ for H1. Then

• (λ = 10) P (X ≤ 0.1151 | λ = 10) = 0.684 =⇒ power = 0.316.

• (λ = 1) P (X ≤ 0.1151 | λ = 1) = 0.109 =⇒ power = 0.891.

Intuitively, the Type II error decreases because we specifically chose the rejection region R on the basis
that the null is true, so the further the true λ is away from 20, the test statistic X is more likely to
fall inside the rejection region.

13.1.3 Likelihood Ratio Test (LRT)

The likelihood ratio test is a way to design a hypothesis test when we have two simple hypotheses. Assume
the data comes from a parametric family f(· | θ), and we are testing H0 : θ = θ1 and H1 : θ = θ2. Compute
the ratio of the likelihoods of each θ value

LR =
Likelihood of θ1

Likelihood of θ2
.

The likelihood may be just f(x | θ), or
∏
f(xi | θ), depending on the data. Design the hypothesis test

as follows: {
H0 if LR > c

H1 if LR ≤ c.

Note that the cases could switch, depending on the situation.

This next lemma shows that the LRT is the best possible hypothesis test for testing two simple hypotheses.

Lemma 13.8 (Neyman-Pearson Lemma). Suppose H0, H1 are simple hypotheses, and let c ≥ 0. Suppose
α, β be the Type I, Type II errors (respectively) for the LRT with threshold c. Then for any other hypothesis
test, if its Type I error = α, then its Type II error ≥ β.

Similarly, for any other hypothesis test, if its Type II error = β, then its Type I error ≥ α.

13.1.4 Generalized Likelihood Test

As the name suggests, the generalized likelihood test is for testing two hypotheses that are not necessarily
simple. Assume the data comes from a parametric family f(· | θ), and we are testing H0 : θ ∈ Ω0 and
H1 : θ ∈ Ω1.

The generalized likelihood ratio (GLR) is

Λ =
maxθ∈Ω0

∏n
i=1 f(Xi | θ)

maxθ∈Ω0∪Ω1

∏n
i=1 f(Xi | θ)

.
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To find the GLR, first calculate the MLE (since the MLE is the value that gives the maximum) given
the appropriate space i.e. Ω0,Ω1, then plug the MLE back in.

Proposition 13.9.

1. Λ ≤ 1.

2. If Λ ≈ 1, then we do not reject the null.

3. If Λ is far away from 1 by a certain threshold amount, then we reject the null.

Proof.

1. If A ⊂ B, then supA ≤ supB, and the result follows.

2. If the null is actually true, then the maximum will be achieved from inside Ω0, which means that the
numerator and the denominator should be around the same value.

3. If instead the alternative is true, then the denominator should be significantly greater than the numer-
ator.

To decide the threshold, we use an asymptotic result involving Λ.

Proposition 13.10. Let Λ be the GLR. Under some regularity conditions, −2 log(Λ) asymptotically follows
a χ2

d−d0 distribution, where d, d0 are the dimensions of Ω0 ∪ Ω1,Ω0 respectively.

In particular, the regularity condition is that Ω0 must lie in the interior of Ω0 ∪ Ω1 (in the topological
sense, so there must exist an ε-thick wall around Ω0 such that it still fits inside Ω0 ∪ Ω1).

To run a generalized likelihood ratio test at level α, we need to compute a threshold such that

PH0(Λ < (threshold)) ≈ α.

Hence, by the proposition, we can simply set

threshold = F−1
χ2
d−d0

(1− α), so

{
H0 −2 log(Λ) ≤ threshold

H1 −2 log(Λ) > threshold.

Similarly, for a calculated Λ, its p-value is 1− Fχ2
d−d0

(−2 log(Λ)).

13.2 p-values

Definition 13.11 (p-value). Let T be a test statistic, and R be the rejection region of a hypothesis test.
Then for any value t of T , the p-value of t is the value of α for which t lies on the boundary of R.

In other words, the p-value of T = t is the α level at which t switches from being outside the rejection
region to being inside it (or vice versa).

Another interpretation of the p-value of T = t is the probability that the test statistic is at least as
extreme as t, given that H0 is true.

Example 13.12. Suppose we have X ∼ Exponential(λ). Testing H0 : λ = 20 versus H1 : λ < 20, we
concluded that a one-sided rejection region (c,∞) would be most appropriate. What is the p-value of x?

Since X itself is the test statistic, we solve

P (X > x | λ = 20) = e−20x = α.

This equation aligns with both interpretations of p-value in the definition. Hence, after observing X, the
p-value is e−20X .
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14 Confidence Intervals, Hypothesis Testing, & p-values

Theorem 14.1. For a two-sided test / confidence interval, the following are equivalent:

1. If we test H0 : θ = θ0 vs. H1 : θ 6= θ0, then the test statistic falls into a rejection region R with level α.

2. If we test H0 : θ = θ0 vs. H1 : θ 6= θ0, then the p-value of the test statistic is ≤ α.

3. If we construct a 1− α confidence interval for θ, then θ0 falls outside of the confidence interval.

The same is true for one-sided tests and one-sided confidence intervals

Proof. We present only the intuitive ideas.

• ((1) ⇐⇒ (2)) Notice that as the value of the test-statistic increases, its p-value decreases. This means
that if the test-statistic is so large that it falls inside R, then it will have a lower p-value than α.

• ((1) ⇐⇒ (3)) Suppose the 1− α confidence interval gives

P (bound1(θ) ≤ θ0 ≤ bound2(θ)) = 1− α.

We can rewrite these bounds to get

P (bound1(θ0) ≤ θ ≤ bound2(θ0)) = 1− α.

Hence the probability that θ falls outside of the bounds, given that the null is true, is α, which means
that the test statistic falls inside R with level α.

15 Multinomial Data

Definition 15.1. The multinomial distribution is a generalization of the binomial distribution, where

• we have m ≥ 2 categories (binomial distribution is m = 2),

• the probabilities p1, ..., pm sum to 1 (p1 + ...+ pm = 1), and

• we draw n independent observations, which each obey p1, ..., pm, and we count Xi for i = 1, ...,m,
where Xi is the number of observations that fall into the ith category (X1 + ...Xm = n).

Definition 15.2 (Probability simplex). For a multinomial distribution with m categories, we define the
probability simplex

∆m = {(p1, ..., pm) | pi ∈ [0, 1] s.t. p1 + ...+ pm = 1} ⊂ Rm.

We want to run hypothesis tests of the for H0 : (p1, ..., pm) ∈ Ω0 vs. H1 : (p1, ..., pm ∈ ∆m \ Ω0. Since
H1 is not a simple hypothesis, we can use either the generalized likelihood ratio test, or Pearson’s χ2 test.

1. Generalized Likelihood Ratio Test. The likelihood of the multinomial distribution, after having
observed X1, ..., Xm (recall that X1, ..., Xn are not i.i.d. random variables, but rather the observed
counts on each of the categories), and parameters p1, ..., pm, is

n!∏m
i=1Xi

m∏
i=1

pXii .

To find the GLR, we have the general strategy for finding the MLE within a space Ω0:
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(a) Find the dimension i.e. the number of free parameters of Ω0.

(b) Rewrite (p1, ..., pm) as a function of the free parameters.

(c) Rewrite the log likelihood as a function of the free parameters.

(d) Solve for each of the free parameters by taking the partial derivative w.r.t. each free parameter,
and setting to 0. This gives you the MLE for each parameter.

(e) Plug the MLE back into the likelihood function.

In general though, the MLE of the likelihood within the entire probability simplex is

p̂1 =
X1

n
, p̂2 =

X2

n
, ..., p̂m =

Xm

n
.

Having computed the GLR, in order to test H0 or the p-value, compare −2 log(Λ) against χ2
d−d0 .

2. Pearson’s χ2 Test. To generate the test statistic for the Pearson χ2 test, we have

(a) Calculate the expected counts for each category, i.e. for i = 1, ...,m,

Ei = n · p̂i, where p̂i is the MLE.

(b) Calculate the test statistic

X2 =

n∑
i=1

(Xi − Ei)2

Ei
.

The division by Ei is there because the size of a discrepancy is relative to the number of samples
taken. For example, if n = 10, then the discrepancy between 4 and 7 is significant, but if
n = 10000, then the discrepancy between 100 and 103 is not that significant.

(c) X2 is asymptotically distributed to χ2
d−d0 , so to test H0 and calculate p-values, compare X2

against χ2
d−d0 .
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A Cheat Sheet

A.1 Discrete distribution (PMF — CDF — EV — Var)

1. Bernoulli(p): ∅ | ∅ | p | p(1− p)

2. Binomial(n, p):
(
n
k

)
pk(1− p)n−k | ∅ | np | np(1− p)

3. Geometric(p): (1− p)kp | 1− (1− p)k | 1
p |

1−p
p2 .

4. Poisson(λ): λe−λ

k! | ∅ | λ | λ

A.2 Continuous distribution (Dens — CDF — EV — Var)

1. Uniform[a, b]: 1
b−a |

x−a
b−a |

a+b
2 |

1
12 (b− a)2

2. Exponential(λ): λe−λx | 1− e−λx | 1
λ |

1
λ2

3. Normal(µ, σ2): 1
σ
√

2π
e−

1
2 ( x−µσ )

2

| ∅ | µ | σ2

A.3 Expectation (µ)

1. (Discrete) E(X) =
∑
x x · pX(x),

2. (Continuous) E(X) =
∫∞
−∞ x · fX(x) dx

3. (Function) E(g(X)) =
∑
x g(x) · pX(x) or

∫∞
−∞ g(x)fX(x) dx

4. E(1A) = P (A).

5. E(a+ b1X1 + ...+ bnXn) = a+ b1E(X1) + ...+ bnE(Xn).

6. X ≤ Y almost surely =⇒ E(X) ≤ E(Y ).

7. X ∈ [0,∞),∀t > 0 =⇒ P (X ≥ t) ≤ E(X)
t .

8. Joint (X,Y ) =⇒ E(X) = EY (EX|Y (X | Y ))

9. X⊥Y =⇒ E(XY ) = E(X)E(Y )

10. X⊥Y =⇒ g(X)⊥h(Y ) =⇒ E(g(X)h(Y )) = E(g(X)) · E(h(Y )).

A.4 Variance (σ2)

1. Var(X) = E((X − µX)2).

2. (Discrete) Var(X) =
∑
x(x− µX)2pX(x).

3. (Continuous) Var(X) =
∫∞
−∞(x− µX)2fX(x)dx.

4. Var(X) = E(X2)− E(X)2

5. RV X and ∀t > 0 =⇒ P (|X − µX | ≥ t) ≤ σ2
X

t2 .

6. Var(X) = 0 if and only if P (X = µX) = 1.

7. Var(a+ bX) = b2Var(X).

8. X1, ..., Xn mutually independent =⇒ Var(X1 + ...+Xn) = Var(X1) + ...+ Var(Xn).
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A.5 Covariance

1. Cov(X,Y ) = E((X − µX) · (Y − µY )).

2. Cov(X,Y ) = E(XY )− E(X)E(Y ).

3. Corr(X,Y ) = Cov(X,Y )
σXσY

.

4. Cov(X,X) = Var(X), and Corr(X,X) = 1.

5. ∀X,Y,Corr(X,Y ) ∈ [−1, 1].

6. Corr(X,Y ) = ±1 ⇐⇒ Y = aX + b

7. Cov(a+ bX, a′ + b′Y ) = bb′Cov(X,Y )

8. b, b′ 6= 0 =⇒ Corr(a+ bX, a′ + b′Y ) = Corr(X,Y ) · sign(bb′)

9. Cov(X1 + ...+Xn, Y1 + ...+ Yn) =
∑n
i=1

∑m
j=1 Cov(Xi, Yj).

10. X⊥Y =⇒ Cov(X,Y ) = Corr(X,Y ) = 0.

A.6 Tricks

1. Necessary condition for independent RV is that the supports match.

2. Use tower law in a joint distribution setting.

3. Use tower law to remove ambiguity and set conditions on RV.

4. The idea of taking one condition and iterating over all possible conditions is a useful one. (basis for
law of total probability and tower law).

5. For continuous, derive CDF first, then differentiate to get the density function.

6. Conditional distributions are not so different from the ordinary distributions. Consider X | Y = y,
just observe all the values of (X,Y ) and keep the X ′s that have Y = y associated to them.

7. Remember whether RV is discrete or continuous.

8. Remember which variables are constants (especially useful for anything related to expectation.)

9. Remember what the support is.

10. If {B1, ..., Bn} partition the event A, then

P (B1 | A) + ...+ P (Bn | A) = 1.

In particular, this means P (B | A) = 1− P (Bc | A), so P (B | A)P (A) = P (A)− P (Bc | A)P (A).
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A.7 Analogs

1. (Summing over every condition / conditioning, then summing)

←→ P (A) =
∑
i

P (A | Bi)P (Bi)

←→ P (A) = EX(P (A|X)) =

∫ ∞
x=−∞

P (A | X)fX(x)dx

←→ fX(x) =

∫ ∞
y=−∞

fX,Y (x, y)dy =

∫ ∞
y=−∞

fX|Y (x | y)fY (y) dx

←→ pX(x) =
∑
y

pX,Y (x, y) =
∑
y

pX|Y (x | y)pY (y)
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