
EQUIVALENT NOTIONS OF ENTROPY UNDER ERGODICITY

Abstract. In this paper, we first discuss ergodicity and give a proof of the

Birkhoff Ergodic Theorem. We then show how the Birkhoff Ergodic Theorem

affects results in measure-theoretical entropy, giving a proof of the Brin-Katok
formula for local entropy. Finally, we show that on expanding C2 maps on the

unit circle, the Lyapunov exponent is equal to the entropy. We assume the

reader has an understanding of Lebesgue integration and measure theory, but
an appendix is included with background material.
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1. Introduction

We begin with a motivating exercise: the flipping of a fair coin. Although coin
flipping is the archetypal probability exercise, how it can be rigorously modelled may
be unclear. As we will demonstrate, measure theory presents various structures to
represent the events of coin flipping, and ergodic theory gives further results about
the probabilities of those events.

Question 1.1. How can we model the flipping of a fair coin?

Suppose we were to flip a fair coin every second for eternity1. Representing heads
as 0 and tails as 1, the series of outcomes can be written as a sequence of 0s and
1s i.e. a binary sequence. The probability of heads is equivalent to how frequently
we encounter 0 in any binary sequence.

1Sisyphus: The Probabilist Version
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2 EQUIVALENT NOTIONS OF ENTROPY UNDER ERGODICITY

Let x1x2x3... be a binary sequence. The average frequency of 0s in this sequence
can be expressed as

(1.2) lim
n→∞

# of times 0 appears in first n digits of x1x2x3...

n
.

To represent the binary sequence as a single real number, let

(1.3) x =

∞∑
i=1

xi
2i

=
x1
2

+
x2
22

+
x3
23

+ ...,

Call x the unit representation of x1x2x3.... We now introduce the doubling map,
the model of coin flipping. Let T : [0, 1)→ [0, 1) be the doubling map, defined as

T (x) =

{
2x 0 ≤ x < 1

2

2x− 1 1
2 ≤ x < 1.

By applying T to x, we can “shift” the binary sequence to the left by one space
i.e. T (x) is the unit representation of the binary sequence x2x3x4... . To check the
number of times 0 appears in x1x2x3..., we can iterate through the sequence with
the doubling map and check if the first digit of each iterate is 0. If we let φx = 1 if
x1 is 0, and 0 otherwise, we can simplify (1.2) to

(1.4) lim
n→∞

1

n

n−1∑
i=0

φT i(x).

One of the main results of this paper, the Birkhoff Ergodic Theorem, shows
that (1.4) exists and equals 1

2 . Coincidentally, notice that the unit representation

of every binary sequence that starts with 0 lies in the half interval [0, 12 ). As we will
see, the half interval and its length is intimately related to (1.4).

In the material to follow, we first introduce ergodicity and prove the Birkhoff Er-
godic Theorem. Then, we present measure-theoretical entropy and use the Birkhoff
Ergodic Theorem to prove the Brin-Katok local entropy formula. Finally, we show
that a different characterization of entropy, the Lyapunov exponent, is equivalent
to the Brin-Katok formulation of entropy in the context of expanding C2 maps on
the unit circle.

2. Ergodicity

Consider a set that is “self-contained” i.e. all of its points travel within itself, and
no points go in or out of it. Ergodicity is the property that if a “self-contained” set
exists, then it is equal in measure to the entire set or a null set. Imagine a barista
making a latte. He/she pours milk into a dark espresso, and swirls until the color
becomes homogenous. The swirling is an ergodic transformation, because the milk
does not stay in one place - instead, it permeates throughout the entire liquid.

Below, we define the notion of a “self-contained” (or almost “self-contained”)
set and formally define ergodicity. For the two definitions, let (X,S(X), µ) be a
probability space.
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Definition 2.1. Let T : X → X be a transformation. Then A ⊂ X is called
strictly T -invariant2 if A = T−1(A). If A = T−1(A) mod µ, then A is called
strictly T -invariant mod µ.3

Definition 2.2. Let T : X → X be a measure-preserving transformation. Then
T is said to be ergodic if for any measurable A ⊂ X that is strictly T -invariant,
µ(A) = 0 or µ(Ac) = 0. (equivalently, µ(A) = 1 or µ(AC) = 1.)

The doubling map presented in the introduction is an example of an ergodic
transformation.

Theorem 2.3. Let T : [0, 1) → [0, 1) be defined as T (x) = 2x mod 1. Then T is
an ergodic measure-preserving transformation on [0, 1).

Proof. We first show that T is a measure-preserving transformation.

To show that T is measurable, let A be a Lebesgue measurable set. Define
A0 = T−1(A) ∩ [0, 12 ), and A1 = T−1(A) ∩ [ 12 , 1). For real numbers s, t, let sA + t

denote the set {sa + t | a ∈ A}. Since A0 = 1
2A, and A1 = 1

2A + 1
2 , both A0

and A1 are measurable. Thus T−1(A) = A0 ∪ A1 is measurable as well. To show
that T preserves measure, observe that A0 and A1 are disjoint. This implies that
λ(T−1(A)) = λ(A0)+λ(A1) by countable additivity, so since both λ(A0) = λ(A1) =
1
2λ(A), we have

λ(T−1(A)) =
1

2
λ(A) +

1

2
λ(A) = λ(A).

We now show that T is ergodic. Define the dyadic interval Dn,k =
[
k
2n ,

k+1
2n

)
,

where n, k are integers such that n ≥ 0, 0 ≤ k ≤ 2n. Let A be a strictly invariant
set. By similar proof to the above, it follows from induction that for any n ≥ 0,

(2.4) λ(T−n(A) ∩Dn,k) =
1

2n
λ(A) = λ(Dn,k)λ(A).

As A is strictly invariant, T−n(A) = A, for any n ≥ 0. Therefore, (2.4) leads to

(2.5) λ(A ∩Dn,k) = λ(A)λ(Dn,k).

We have two cases on the measure of A. If A has zero measure, then we are done.
If A has positive measure, then observe that the dyadic intervals form a sufficient
semi-ring on [0, 1).4 For any δ > 0, there exists a dyadic interval Dn,k such that
λ(A ∩ Dn,k) > (1 − δ)λ(Dn,k). Because δ > 0 is arbitrary, we have λ(Dn,k) ≤
λ(A∩Dn,k). But since A∩Dn,k is a subset of Dn,k, λ(A∩Dn,k) ≤ λ(Dn,k), which
means that λ(A∩Dn,k) = λ(Dn,k). (2.5) finally gives that λ(A) = 1 = λ([0, 1)), so
T is ergodic. �

The lemma below gives a useful fact for ergodic transformations and invariant
functions.

Lemma 2.6. Let (X,S(X), µ) be a probability space. If T : X → X is an ergodic
measure-preserving transformation, then for any measurable function f : X → R
that is invariant i.e. f(x) = f(T (x)) for a.e. x, f is constant a.e.

2Also called strictly invariant or invariant. The same applies for strict T -invariance mod µ.
3In short, the points that go in or out of A are negligible in measure.
4See Appendix A.2.
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Proof. Let f : X → R be a measurable, invariant function. For any t ∈ R, define
the set

At = {x | f(x) > t}.
The invariance of f implies that At is also strictly invariant. By ergodicity,

µ(At) = 1 or µ(At) = 0. If f is not constant, then there exists a t0 ∈ R such that
0 < µ(At0) < 1, and this contradicts the ergodicity assumption. �

3. Birkhoff Ergodic Theorem

The Birkhoff Ergodic theorem asserts that given an ergodic transformation, the
average number of times that a particle passes through a set equals the size of the
set itself. Therefore, averaging over a particle’s behavior can tell much about an
ergodic dynamical system. From an applied standpoint, this means that we can
approximate the expected value of a function by computing its time average for
large values.

We introduce some notation first. From now on, given a function f and a trans-
formation T, let fn, f∗, and f∗ be defined as:

(1) fn(x) =
∑n−1
i=0 f(T i(x)), for n ≥ 1.

(2) f∗(x) = lim inf
n→∞

1
n

∑n−1
i=0 f(T i(x)).

(3) f∗(x) = lim sup
n→∞

1
n

∑n−1
i=0 f(T i(x)).

Furthermore, if f is integrable, then define ||f ||1 :=
∫
|f |dµ.

We give a combinatorially-flavored proof of the Maximal Ergodic Theorem from
[1], which uses the following definition.

Definition 3.1. Let a1, a2, ..., an be a finite sequence of real numbers. Let m ≤ n
be an integer. Then the term ak is called a m-leader if there exists an integer p
with 1 ≤ p ≤ m such that ak + ak+1 + ...+ ak+p−1 ≥ 0.

Lemma 3.2. Let a1, ..., an be a finite sequence of real numbers. Then the sum of
all m-leaders is nonnegative.

Proof. If no m-leaders exist, then the sum of all m-leaders is 0. If m-leaders do
exist, let ak be the first m-leader. Let p1 with 1 ≤ p1 ≤ m be the least integer such
that ak + ...+ ak+p1−1 ≥ 0.

We claim that for every h such that k < h ≤ k+p1−1, ah is a m-leader. Assume
that there exists h such that ah is not an m-leader i.e. ah + ...+ ak+p1−1 < 0. But
ak + ... + ak+p1−1 ≥ 0, so ak + ... + ah−1 > 0, which contradicts that p1 is the
least integer such that the m-leader definition is satisfied. Continue inductively
through the remaining sequence ak+p, ..., an to collect all the m-leaders. The sum
of the m-leaders at each step satisfies the nonnegative condition, so the assertion
holds. �

Lemma 3.3 (Maximal Ergodic Theorem). Let (X,S(X), µ) be a probability space,
and let T : X → X be a measure-preserving transformation. Let f : X → R be an
integrable function, and define

(3.4) G(f) = {x | fn(x) ≥ 0 for some n > 0}.

Then
∫
G(f)

fdµ ≥ 0.
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Proof. Let n ≥ 1 be an integer, and m ≤ n. Define

Gm = {x | fp(x) ≥ 0 for some p with 1 ≤ p ≤ m}.

Define sm(x) to be the sum of all the m-leaders of the finite sequence f(x),
f(T (x)), ..., f(Tn+m−1(x)). Next, define

Sk = {x | f(T k(x)) is a m-leader of f(x), ..., f(Tn+m1(x))}.

Using Sk and the characteristic function, sm(x) =
∑n+m−1
k=0 f(T k(x)) · 1Sk ≥ 0.

As both the measurability of Sk and the integrability of sm follow from the fact
that f is integrable, we get from Lemma 3.2 that

(3.5) 0 ≤
n+m−1∑
k=0

∫
Sk

f ◦ T kdµ.

Observe that for k = 0, ..., n−1, f(T k(x)) is anm-leader if and only if f(T k−1(T (x)))
is also an m-leader. This means that for any 0 ≤ k ≤ n − 1, Sk = T−1(Sk−1). By
iterating through the k′s, we get that Sk = T−k(S0). Hence, for k = 0, ..., n− 1, we
have

(3.6)

∫
Sk

f ◦ T kdµ =

∫
(f ◦ T k) · 1T−k(S0)dµ =

∫
S0

fdµ.

Since f(x) is a m-leader of f(x), ..., f(Tn+m−1(x)) if and only if fp(x) > 0 for
some 1 ≤ p ≤ m, it follows that S0 = Gm. Because f ≤ |f |, from (3.5) and (3.6)
follows that

0 ≤
n−1∑
k=0

∫
Gm

fdµ+

n+m−1∑
j=n

∫
Sj

f ◦ T jdµ

≤ n
∫
Gm

fdµ+m

∫
Sj

|f |dµ.

Dividing by n and taking the limit as n→∞ on both sides of the inequality gives∫
Gm

fdµ ≥ 0. Now, observe that G(f) =
⋃
m≥1Gm. This means that lim

m→∞
f ·1Gm =

f · 1G(f). Furthermore, for any m ≥ 1, |f · 1Gm | ≤ |f · 1G(f)|. By the Dominated
Convergence Theorem, we have

0 ≤ lim
m→∞

∫
f · 1Gmdµ =

∫
lim
m→∞

f · 1Gmdµ =

∫
G(f)

fdµ.

�

Finally, armed with the Maximal Ergodic Theorem, we prove the Birkhoff Er-
godic Theorem. The following proof comes from [5].

Theorem 3.7 (Birkhoff Ergodic Theorem). Let (X,S(X), µ) be a probability space,
and let T : X → X be a measure-preserving transformation. If f : X → R is
integrable, then the following are true:

(1) f̃(x) = lim
n→∞

∑n−1
i=0 f(T i(x)) exists a.e..

(2) f̃(T (x)) = f̃(x) a.e.

(3) For any measurable, strictly invariant set A,
∫
A
fdµ =

∫
A
f̃dµ.
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Furthermore, if T is ergodic, then

(3.8) lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
fdµ a.e.

Proof of (1). For any α, β ∈ R, define

Mα,β = {x | f∗(x) < α < β < f∗(x)}.

The set Mα,β marks the points of X where f∗ and f∗ differ. By definition,
f∗ ≤ f∗, but if Mα,β is a null set, then f∗ = f∗ almost everywhere. Hence, it
suffices to show that Mα,β has measure 0 to show that the limit exists almost
everywhere.

Let α, β ∈ R. Assume for the sake of contradiction that µ(Mα,β) > 0. In the
style of (3.4), consider the set

G(f − β) = {x | (f − β)n ≥ 0 for some n > 0}.

We claim that Mα,β ⊂ G(f − β). If x ∈ Mα,β , then there exists an N ∈ N
such that 1

N

∑N−1
i=0 f(T i(x)) > β. Hence it follows that

∑N−1
i=0 f(T i(x)) − Nβ =

(f − β)N > 0, which means that Mα,β ⊂ G(f − β). Also, from part (2), Mα,β is
T -invariant, so we can restrict T to Mα,β and apply the Maximal Ergodic Theorem
to get ∫

Mα,β

(f − β)dµ ≥ 0, which implies that

∫
Mα,β

fdµ ≥ βµ(Mα,β).

We apply similar logic to G(α− f) to get
∫
Mα,β

fdµ ≤ αµ(Mα,β), which means

that βµ(Mα,β) ≤ αµ(Mα,β). However, if µ(Mα,β) > 0, α < β cannot be true, so we
have a contradiction. Since Mα,β is a null set for any two rationals α, β, the limit
exists a.e.

�

Proof of (2). We show that both f∗ and f∗ are invariant. Observe that

1

n
fn(T (x)) =

1

n
(

n∑
i=0

f(T i(x))− f(x))

=
n+ 1

n
· 1

n+ 1
fn+1(x)− 1

n
f(x).

By taking the lim inf as n goes to ∞ on both sides, it follows that

f∗(T (x)) = lim inf
n→∞

1

n
fn(T (x)) = lim inf

n→∞

1

n+ 1
fn+1(x) = f∗(x).

Similar logic shows that f∗ is invariant, and the result follows. �

Proof of (3). Let f+(x) = f(x) when f(x) ≥ 0 and 0 otherwise. Similarly, let
f−(x) = −f(x) when f(x) ≤ 0 and 0 otherwise. Because f = f+ − f−, it suffices
to show part (3) for nonnegative integrable functions.

The following cases on the bounded-ness of f can be made. First, consider
if f is a bounded, nonnegative function almost everywhere. By the Dominated
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Convergence Theorem,

(3.9)

∫
A

f̃dµ =

∫
A

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) = lim
n→∞

1

n

∫
A

n−1∑
i=0

f(T i(x)).

Because A is strictly invariant, we have from (3.9) that∫
A

f̃dµ = lim
n→∞

1

n

∫
A

n−1∑
i=0

f(T i(x)) =

∫
A

fdµ.

Hence, part (3) holds for nonnegative integrable functions that are bounded
almost everywhere. Next, consider a nonnegative integrable function f with no
condition for boundedness. By approximation of simple functions5, for any ε > 0,
there exists a bounded function g such that ||f − g||1 < ε. Consider |

∫
A
fdµ −∫

A
f̃dµ|. From the triangle inequality, we have

(3.10)

∣∣∣∣∫
A

fdµ−
∫
A

f̃dµ

∣∣∣∣ ≤ ∣∣∣∣∫
A

fdµ−
∫
A

gdµ

∣∣∣∣+

∣∣∣∣∫
A

gdµ−
∫
A

f̃dµ

∣∣∣∣ .
As f and g are both integrable, |f − g| is also integrable. By using the triangle

inequality again on the second absolute value expression, we have that the latter
expression of (3.10) is less than or equal to

(3.11)

∫
A

|f − g|dµ+

∣∣∣∣∫
A

gdµ−
∫
A

g̃dµ

∣∣∣∣+

∣∣∣∣∫
A

g̃dµ−
∫
A

f̃dµ

∣∣∣∣ .
Since g is bounded, the second expression in (3.11) evaluates to 0 by the first

case. To set an upper bound on the third expression of (3.11), observe that by
Fatou’s Lemma,

(3.12) ||f̃ ||1 ≤
∫

lim inf
n→∞

1

n

n−1∑
i=0

|f |(T i(x)) ≤ lim inf
n→∞

∫
1

n

n−1∑
i=0

|f |(T i(x)).

Since T is measure-preserving, the last expression of (3.12) equals
∫
|f |dµ =

||f ||1. This implies that ||f̃ ||1 ≤ ||f ||1. Returning to (3.11),
∫
A
|f −g|dµ = ||f −g||1

and
∣∣∣∫A g̃dµ− ∫A f̃dµ∣∣∣ ≤ ||f − g||1, so∣∣∣∣∫

A

fdµ−
∫
A

f̃dµ

∣∣∣∣ ≤ ||f − g||1 + ||f − g||1 < 2ε.

Because ε can be made arbitrarily small,
∫
A
f̃dµ =

∫
A
fdµ, and this completes

the proof of part (3).

Finally, the addition of ergodicity allows for the application of Lemma 2.6. Part
(2) shows that f̃ is T -invariant and T is ergodic by assumption, so∫

fdµ =

∫
f̃dµ = f̃µ(X) = f̃ a.e.

�

5To be precise, we use that
∫
f is defined as the supremum of the integrals of simple functions

that are less than f .
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Welcome back to coin flipping. Because the doubling map is ergodic, and the
function 1[0, 12 )

is integrable, the Birkhoff Ergodic Theorem implies that the average

frequency of heads in a binary sequence converges to the length of [0, 12 ). In other

words, the probability of heads being 1
2 can be approximated by calculating the

average frequency of heads in a binary sequence of large length N .

4. Entropy

In this section, we define measure-theoretical entropy, and give a proof of the
Brin-Katok Formula for local entropy.

Entropy measures the complexity of a system. To understand complexity for
our purposes, imagine a baker thoroughly placing brown sugar balls into dough
and kneading the dough. The complexity of a kneading technique can be measured
by how quickly the sugar balls break down. For example, a technique that keeps
the original balls intact does not mix the dough as well as one that crushes the balls
very quickly. Furthermore, notice that the rate of break-down is equivalent to the
rate at which the number of distinguishable sugar fragments grows over time. We
will show that in an ergodic process such as kneading, the entropy equals the rate
of growth of the number of distinguishable orbits as time increases.

4.1. Entropy Definitions. Given a probability space (X,S(X), µ), define a par-
tition of X as a countable collection of pairwise disjoint measurable sets such that
their union has full measure.6

Definition 4.1. Let α = {A1, ..., An} be a finite partition of X. Then the entropy
of the partition7 α is defined as

H(α) = −
∑
A∈α

µ(A) logµ(A).

Given two partitions α, β, denote α ∨ β as the partition consisting of sets of
the form A ∩ B, where A ∈ α, and B ∈ β. Also, if α = {A1, ..., An}, then given a
transformation T : X → X, define T−k(α) as the partition {T−k(A1), ..., T−k(An)}.

Definition 4.2. Let (X,S(X), µ, T ) be a measure-preserving dynamical system.
Let α = {A1, ..., An} be a finite partition of X. Then the entropy of the measure-
preserving dynamical system with respect to α is defined as

hµ(T, α) = lim
n→∞

1

n
H(α ∨ T−1(α) ∨ ... ∨ T−(n−1)(α))

= lim
n→∞

1

n
H(

n−1∨
i=0

T−i(α)).

Note that the limit exists from Fekete’s Subadditivity Lemma (see [6]).

Definition 4.3. Let (X,S(X), µ, T ) be a measure-preserving dynamical system.
Then the entropy of the measure-preserving dynamical system is defined as

hµ(T ) = sup{hµ(T, α) | α is a finite partition}.

6The measure of their union equals the measure of X.
7Also called Shannon entropy.
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Calculating the entropy of a dynamical system is difficult; the supremum must be
taken over all possible partitions of the measure space. Thankfully, the Brin-Katok
Formula for local entropy greatly simplifies entropy calculation in the contexts
where X is also a metric space.

4.2. The Brin-Katok Formula for Local Entropy. For this section, assume
all spaces to be a topological measure-preserving dynamical system with metric d.

Define dn(x, y) := max0≤i≤n−1 d(T i(x), T i(y)). With this, define Bn(x, ε) :=
{y ∈ X | dn(x, y) < ε}. Essentially, Bn(x, ε) is the set of points that are indistin-
guishable from x up to error ε in n iterates. The Brin-Katok formula tells us that
the size of this set decays at an exponential rate, and this rate equals the entropy
of the system.

Theorem 4.4 (Brin-Katok Formula for Local Entropy). Let (X,T ) be a topological
dynamical system with a metric d, and a measure µ that is ergodic and T -invariant
with entropy h. Then for a.e. x ∈ X,

(4.5) hµ = lim
ε→0

(
lim sup
n→∞

− logµ(Bn(x, ε))

n

)
= lim
ε→0

(
lim inf
n→∞

− logµ(Bn(x, ε))

n

)
Notice that calculating the measure of a specific set Bn(x, ε) is much easier than

computing the supremum over the set of all possible partitions.

Below are several combinatorial lemmas from [2] and [3] that are used in the
proof of the Brin-Katok Formula.

Lemma 4.6. If A1, ..., AN are sets in a probability space, and µ(Ai) > c, and each
x ∈ X belongs to at most k of {Ai}Ni=1, then N ≤ k

c .

Proof. Since each x ∈ X belongs to at most k of the sets A1, ..., AN , we have∑N
i=1 1Ai(x) ≤ k. Integrating on both sides, it follows that∫

kdµ ≥
∫ N∑

i=1

1Aidµ

=

N∑
i=1

µ(1Ai) > Nc.

Since we are in a probability space,
∫
kdµ = k, and the result follows. �

Lemma 4.7. Define
(
n
i

)
as the number of subsets of {1, 2, ..., n} that are of size

less than i. Also, define H(α) = −α log2(α) − (1 − α) log2(1 − α). Then for every
0 ≤ α < 1

2 , (
n

αn

)
≤ 2n(H(α)).

Proof. By the binomial theorem, we have

1 = (α+ (1− α))n ≥
∑
i≤αn

(
n

i

)
αi(1− α)n−i.(4.8)

Because α ≤ 1
2 , α

k(1− α)k decreases as k increases, which means that

min
i≤αn
{αi(1− α)n−i} = ααn(1− α)n−αn.
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Therefore, from (4.8) follows that

1 ≥
∑
i≤αn

(
n

i

)
ααn(1− α)n−αn =

∑
i≤αn

(
n

i

)
2−n(H(α)).

Dividing by 2−n(H(α)) gives the desired result. �

Finally, we arrive at the proof for the Brin-Katok Formula. We follow the proof
in [2].

Proof of Brin-Katok - Part I. The goal is to show that

hµ ≥ lim
ε→0

(
lim sup
n→∞

− logµ(Bn(x, ε))

n

)
.

Let ε > 0, and let α be a partition with atoms of diameter less than ε. Then
for a.e. x ∈ X, αn(x) ⊆ Bn(x, ε).8 Since µ(αn(x)) ≤ µ(Bn(x, ε)) and log is an
increasing function, it follows that

lim inf
n→∞

− logµ(Bn(x, ε))

n
≤ lim inf

n→∞

− logµ(αn(x))

n
= hµ(T, α) ≤ hµ.

Because ε is arbitrary, the result follows. �

Proof of Brin-Katok - Part II. We will show that for a.e. x ∈ X,

(4.9) hµ ≤ lim
ε→0

(
lim inf
n→∞

− logµ(Bn(x, ε))

n

)
.

To prove (4.9) for a.e. x ∈ X, it suffices to show that for any ρ > 0,

µ

({
x
∣∣∣ lim
ε→0

(
lim inf
n→∞

− logµ(Bn(x, ε))

n

)
< hµ − ρ

})
= 0.

To this end, let ρ > 0, and fix ε > 0. Let α = {A1, ..., Ak} be a partition
of X such that hµ(α, T ) > hµ − ρ

4 , and µ(∂Ai) = 0 for all 1 ≤ i ≤ k. Define

Eε =
⋃
A∈α(∂A)(ε), which is the union of the boundaries of A ∈ α up to error ε.

Also, let In(x) = {0 ≤ i ≤ n− 1 | T i(x) 6∈ Eε}, and define

γn(x) =
⋂
i∈In

(T−iα)(x).

We claim that Bn(x, ε) ⊆ γn(x). Let y ∈ Bn(x, ε). Without loss of generality,
assume that for 1 ≤ i ≤ n − 1, T i(x) 6∈ Eε. We have that d(T ix, T iy) < ε, and
d(x, ∂((T−iα)(x))) ≥ ε, so T i(y) ∈ (T−iα)(x). Therefore, y ∈ γn(x). From this,
µ(Bn(x, ε)) ≤ µ(γn(x)), which means that

lim
ε→0

(
lim inf
n→∞

− logµ(Bn(x, ε))

n

)
≥ lim
ε→0

(
lim inf
n→∞

− logµ(γn(x))

n

)
.

Thus it suffices to show that for a.e. x,

lim
ε→0

(
lim inf
n→∞

− logµ(γn(x))

n

)
≥ hµ − ρ.

Now, define another partition

β = {A1 ∩ Eε, ..., Ak ∩ Eε, X \ Eε}.

8Given α = {A1, ..., An} as a partition of X, define α(x) = Ai if x ∈ Ai for some 1 ≤ i ≤ n.
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Consider the following property of Shannon entropy: if ξ1, ξ2 are partitions, then
H(ξ1 ∨ ξ2) ≤ H(ξ1) +H(ξ2). This and the fact that T is measure-preserving gives
that hµ(T, β) ≤ −

∑
B∈β µ(B) logµ(B). As ε approaches 0, since µ(Eε) approaches

0, µ(Ai ∩ Eε) and logµ(X \ Eε) also approach 0. Hence, for sufficiently small ε,
hµ(T, β) < ρ

4 .
Consider the following set of sets

Un = {αn(x) | µ(αn(x)) < 2−n(hµ(T,α)−
ρ
4 )},

Vn = {βn(x) | µ(βn(x)) > 2−n(hµ(T,β)+
ρ
4 )},

Wn = {γn(x) | µ(γn(x)) > 2−n(hµ−ρ)}, and

Zn = {γn(x) ∩ βn(x) | αn(x) ∈ Un, βn(x) ∈ Vn, γn(x) ∈Wn}.
With these sets, the goal is to show that by the Borel-Cantelli Lemma, for a.e.

x ∈ X, there are only finitely many n such that γn(x) ∈ Wn. Showing this means
that for a.e. x and for large N ’s,

µ(γN (x)) ≤ 2−N(hµ−ρ), which means that
− log(µ(γN (x)))

N
≥ hµ − ρ.

First, we show that the conditions of the Borel-Cantelli Lemma are met. Every
element of Wn has measure of at least 2−n(hµ−ρ), and we are in a probability space.
Assuming that {γn(x)}x∈X is a partition (which it isn’t, but we will establish a
workaround later), it follows that

1 ≥
∑

γn(x)∈Wn

µ(γn(x)) > |Wn| · 2−n(hµ−ρ).

Therefore, |Wn| ≤ 2n(hµ−ρ). By similar logic, |Vn| ≤ 2n(hµ(T,β)+
ρ
4 ).

Now, observe that if D ∈ Zn, then since D = γn(x) ∩ βn(x) ⊆ αn(x), it must

be that µ(D) ≤ µ(αn(x) < 2−n(hµ(T,α)−
ρ
4 ). Because every element of Zn is the

intersection of an element of Wn and an element of Vn,

µ(∪Zn) ≤
∑
D∈Zn

µ(D)

< |Wn| · |Vn| · 2−n(hµ(T,α)−
ρ
4 )

≤ 2n(hµ−ρ) · 2n(hµ(T,β)+
ρ
4 ) · 2−n(hµ(T,α)−

ρ
4 ).

Recall that hµ(T, α) > hµ − ρ
4 . Then µ(∪Zn) < 2n(hµ(T,β)−

ρ
4 ). Also recall that

for sufficiently small ε, hµ(T, β) < ρ
4 . This means that 2n(hµ(T,β)−

ρ
4 ) decreases

exponentially with growing n. Therefore,
∑
n µ(∪Zn) <∞, and the conditions for

Borel-Cantelli are satisfied.

By Borel-Cantelli, a.e. x ∈ X is in finitely many Zn. This means that for a.e.
x, there exists an integer Nx such that if n > Nx, then x 6∈ Zn. However, for
sufficiently large n, it is true that for a.e. x, αn(x) ∈ Un and βn(x) ∈ Vn. By
definition of Zn, γn(x) must be in finitely many Wn as well. Hence, we have shown
what we set out to prove.

However, {γn(x)}x∈X is not a partition, which means that the cardinality argu-
ment for Wn does not hold. We will show that that the argument above still holds
regardless. Define

Γn = {γn(x) | x ∈ X and |In(x)| > n(1− 2µ(Eε))}.
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We want to show that for a.e. x, γn(x) ∈ Γn for large n. By the Birkhoff Ergodic
theorem, for a.e. x,

lim
n→∞

1

n

n−1∑
i=0

1Eε(T
i(x)) = µ(Eε).

This is to say that the average number of times that the iterates of x visit Eε
approaches µ(Eε). Recall that |In| is the number of iterates that are not in Eε.
Therefore, there exists an integer N such that if n > N , then∣∣∣∣n− |In(x)|

n
− µ(Eε)

∣∣∣∣ < µ(Eε).

From this follows that for sufficiently large n and a.e x, |In(x)| > n(1− 2µ(Eε),
so γn(x) ∈ Γn. By definition of γn(x), each element of Γn is the intersection of
at least n(1 − 2µ(Eε)) of the sets α(x), (T−1α)(x), ...(T−n+1α)(x). Furthermore,
x ∈ γn(x), so each x belongs to at most

(
n

n(1−2µ(Eε))
)

=
(

n
n(2µ(Eε))

)
elements of Γn.

By Lemma 4.7, since 2µ(Eε) ≤ 1
2 for sufficiently small ε, x belongs to at most

2−n(H(2µ(Eε))) elements of Γn.

Since µ(Eε) goes to 0 as ε goes to 0, the exponent approaches 0 as well. Finally,
re-define Wn = {C ∈ Γn | µ(C) > 2−n(hµ−ρ)}. By Lemma 4.6 and the logic showed
above for finding cardinalities,

|Wn| ≤ 2n(hµ−ρ) · 2−n(H(2µ(Eε))).

As ε goes to 0, |Wn| ≤ 2n(hµ−ρ), and the argument holds. �

Example 4.10. As an example of applying the Brin-Katok Formula, we compute
the entropy of the doubling map. The goal is to calculate

lim
ε→0

(
lim
n→∞

− logµ(Bn(x, ε))

n

)
.

As long as two points are ε
2n apart from each other from the outset, all of their

iterates up to the nth iteration will be at most ε apart from each other. Therefore,
µ(Bn(x, ε)) = ε

2n . Hence, it follows that

lim
ε→0

(
lim
n→∞

− logµ(Bn(x, ε))

n

)
= lim
ε→0

(
lim
n→∞

n log 2− log ε

n

)
= log 2.

5. Entropy Calculation for Expanding C2 Maps on S1

In this section, we show that the entropy of an expanding C2 map on S1 is equal
to its Lyapunov exponent, which we define below.

5.1. Lyapunov Exponent. Along with entropy, the Lyapunov exponent gives
another characterization of chaos. In particular, it measures the average rate at
which the iterates of two infinitesimally close points diverge (or converge).

Consider the following heuristic derivation of the Lyapunov exponent. Let x and
x+ dx be points that are arbitrarily close to each other. We will observe how the
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iterates of x and x+ dx travel relative to each other. Using the derivative of f , we
approximate the distance between each iterate of x and x+ dx inductively:

|f(x)− f(x+ dx)| ≈ |f ′(x)||dx|
|f2(x)− f2(x+ dx)| ≈ |f ′(f(x))||f(x)− f(x+ dx)| = |f ′(f(x))||f ′(x)||dx|
...

|fn(x)− fn(x+ dx)| ≈ |dx|
n−1∏
i=0

|f ′(f i(x))|.

The Lyapunov exponent λ at x, the average rate at which the iterates of x and
x+ dx diverge, is therefore defined as

(5.1) λ(x) := lim
n→∞

1

n

n−1∑
i=0

log(|f ′(f i(x))|).

The right-hand side of (5.1) looks suspiciously like a Birkhoff sum. Indeed, if f
is ergodic, then by the Birkhoff Ergodic Theorem, (5.1) is guaranteed to converge
almost everywhere to

∫
log |f ′|.

5.2. Connecting Entropy and Lyapunov Exponents. From now on, assume
all maps are expanding C2 maps on S1. We say f is C2 expanding on S1 if there
exists f̃ ∈ C2(R,R), with f̃ ′ > 1 and f̃(x + 1) = f̃(x), such that f(x) = f̃(x
mod 1) mod 1.

These two lemmas from [4] are used in the main proof.

Lemma 5.2 (Existence of Unique Continuous Invariant Measure). There exists a
unique, continuous function φ : S1 → [0,+∞) such that dµ = φ · dλ is ergodic and
invariant under f , where λ is the Lebesgue measure.

Proof. See [4, p. 191]. �

Lemma 5.3 (Distortion Lemma). There exists c ∈ R such that for all x ∈ S1 and
y ∈ Bn(x, ε),

(5.4)
1

c
<

(fn)′(x)

(fn)′(y)
< c.

Proof. By the chain rule, we have

(fn)′(x)

(fn)′(y)
=

n−1∏
i=0

f ′(f i(x))

f ′(f i(y))
=

n−1∏
i=0

(
1 +

f ′(f i(x))− f ′(f i(y))

f ′(f i(y))

)
.

Because f is a C2 map, for 0 ≤ i ≤ n− 1, there exists some point zi in between
f i(x) and f i(y) such that f ′(f i(x)) − f ′(f i(y)) = f ′′(zi)(f

i(x) − f i(y)). Further-
more, since f ′′ is continuous and S1 is compact, let M = supx∈S1(f ′′(x)). It follows
that

(fn)′(x)

(fn)′(y)
≤
n−1∏
i=0

(
1 +

M |f i(x)− f i(y)|
f ′(f i(y))

)
.

Since f ′ is also continuous, let λ−1 > 1 be the lower bound of f ′. Again, by the

Mean Value Theorem, it follows that for 0 ≤ i ≤ n−1, |f
i(x)−fi(y)|
f ′(fi(y)) ≤ λn−i|fn(x)−
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fn(y)|, which means that

(5.5)

n−1∏
i=0

(
1 +

M |f i(x)− f i(y)|
f ′(f i(y))

)
≤
n−1∏
i=0

(
1 +Mλn−i|fn(x)− fn(y)|

)
.

We want to establish an upper bound on the right hand side of (5.5). Observe
that given a sequence {an}, log (

∏∞
n=1(1 + an)) =

∑∞
n=1(1 + an). Furthermore,

log(1 + an) ≤ an if an is positive, so it follows that
∑∞
n=1(1 + an) ≤

∑∞
n=1 an.

Now, observe that in (5.5), M is a constant value, and |fn(x)−fn(y)| is bounded
above by the fact that y ∈ Bn(x, ε). Since λ−1 > 1, the argument above leads to
an infinite geometric series with a finite sum, so we have a global upper bound c0.

By similar logic, there exists c1 such that 1
c1
< (fn)′(x)

(fn)′(y) . Let c = max(c0, c1) and

the result follows. �

Theorem 5.6. Let f : S1 → S1 be an expanding C2 map, and µ be the unique,
ergodic, and invariant measure given by Lemma 5.2. Then

hµ =

∫
log |f ′|dµ.

Proof. The goal is to use the Brin-Katok Formula to connect entropy with the
Lyapunov exponent. To this end, we will first calculate µ(Bn(x, ε)) for any x ∈ S1.

Let x ∈ S1. Because f ′ is continuous and S1 is compact, let M = supx∈S1 f ′(x),
and set ε < 1

2M . For any n ≥ 1, we first show that fn|Bn(x,ε) : Bn(x, ε) →
B(fn(x), ε) is bijective and that its inverse exists.

For surjectivity, the definition of Bn(x, ε) gives fn(Bn(x, ε)) ⊂ B(fn(x), ε). To
show the other inclusion, it suffices to prove that B(f(x), ε) ⊂ f(B(x, ε)), because
this implies that for all k such that 0 ≤ k ≤ n, B(f(x), ε) ⊂ fn−k(B(fk(x), ε) by
an inductive argument.

Recall that there exists f̃ ∈ C2(R,R), with f̃ ′ > 1 and f̃(x+1) = f̃(x), such that

f(x) = f̃(x mod 1) mod 1. It thus suffices to show that f̃ maps a ball of diameter

ε to a ball of diameter greater than ε. Observe that because f̃ is continuous and
monotone, f̃(B(x, ε)) = (f̃(x− ε), f̃(x+ ε)). Showing that f̃(x+ ε) > f̃(x) + ε and

f̃(x − ε) < f̃(x) − ε proves that B(f(x), ε) ⊂ f(B(x, ε)). Using the Fundamental

Theorem of Calculus and the fact that f̃ ′ > 1, we have

f̃(x+ ε)− f̃(x) =

∫ x+ε

x

f̃ ′(y) dλ(y) >

∫ x+ε

x

dλ(y) = ε.

The other inequality follows by similar logic, so the surjectivity of fn|Bn(x,ε)
follows. We now show injectivity. It suffices to show that, for 0 ≤ k ≤ n − 1,
f |fk(Bn(x,ε)) is injective, because fn|Bn(x,ε) is the composition of these restricted

f ’s. Because fk(Bn(x, ε)) ⊂ B(fk(x), ε), f |fk(Bn(x,ε)) is restricted to a set that is

smaller than a ball of diameter ε in R. Working with f̃ again, if a ball of diameter
ε in R maps to a ball of diameter less than 1, then f must be injective on the unit
circle. To show this, we have

f̃(x+ ε)− f̃(x− ε) =

∫ x+ε

x−ε
f ′(y) dλ(y) < (2M)ε < 1.

Therefore, fn|Bn(x,ε) is bijective onto B(fn, ε).
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Now, let g = fn|Bn(x,ε). Lemma 5.3 gives a c0 such that for all z ∈ Bn(x, ε),
1
c0
< g′(x)

g′(z) < c0. By bijectivity, g−1 exists, so 1
c0
< (g−1)′(g(z))

(g−1)′(g(x)) < c0. Therefore, for

any y ∈ B(fn(x), ε), we have that

1

c0
<

(g−1)′(y)

(g−1)′(g(x))
< c0.

By Lemma 5.2, let φ : S1 → [0,+∞) be the unique, continuous function such
that dµ = φ · dλ is invariant and ergodic. The continuity of φ implies that φ
is bounded on B(fn(x), ε), so there exists c1 such that for all y ∈ B(fn(x), ε),
1
c1
< φ(y) < c1.

Set c = max(c0, c1). We return to the estimation of µ(Bn(x, ε)) with the change
of variables formula, which gives

µ(Bn(x, ε)) =

∫
B(fn(x),ε)

(g−1)′(y) dµ(y)

=

∫
B(fn(x),ε)

(g−1)′(y) · φ(y) dλ(y).

By using the lower bound 1
c and the upper bound c, it follows that

2ε

c2
· (g−1)′(g(x)) ≤

∫
B(fn(x),ε)

(g−1)′(y) · φ(y) dλ(y) ≤ 2εc2 · (g−1)′(g(x)),

Applying the log and dividing by n on all sides, we get

log
(
2ε
c2

)
n

+
log
(

1
(fn)′(x)

)
n

≤ log(µ(Bn(x, ε)))

n
≤

log
(
2εc2

)
n

+
log
(

1
(fn)′(x)

)
n

.

Taking the limit as n goes to infinity, we get

(5.7) lim
n→∞

− log(µ(Bn(x, ε)))

n
= lim
n→∞

log((fn)′(x))

n
.

Keeping in mind that f ′ > 1, applying the chain rule equates the right hand side
of (5.7) to

lim
n→∞

1

n

n−1∑
i=0

log(|f ′(f i(x))|), which is a Birkhoff sum.

The Birkhoff Ergodic theorem gives that (5.7) equals
∫

log |f ′|dµ. By the Brin-
Katok Formula, hµ is the limit of (5.7) as ε approaches zero, so the desired result
follows. �

Remark 5.8. Notice that this result gives an extremely easy proof that the entropy
of the doubling map is log 2.
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Appendix A. Measure Theory and Integration

A.1. Introduction to Measure Theory. As mentioned in the introduction, the
length of the half interval is related to the probability of heads turning up in a series
of coin flips. However, what is “length”, and can we measure the length or size of
other objects? Although “size” and “length” are easy concepts to grasp as far as
intervals are concerned, defining them in generality proves to be more difficult.

Definition A.1. A σ-algebra on a nonempty set X is a collection S(X) of subsets
of X such that

• S(X) is nonempty.
• S(X) is closed under countable unions.
• S(X) is closed under complements.

That S(X) is closed under countable intersections follows from the second and
third conditions.

With the σ-algebra forming the sets that can be measured, the natural next
question is what unit of measure can be used for the σ-algebra.

Definition A.2. Let S(X) be a σ-algebra. Then the function µ : S(X) → [0,∞]
is called a measure on S(X) if

(1) µ(∅) = 0.
(2) µ is countably additive i.e. for any collection of disjoint sets {Xn}n≥1 in

S(X),

µ

( ∞⋃
n=1

Xn

)
=

∞∑
n=1

µ(Xn).

Definition A.3. Let X be a nonempty set, S(X) be a σ-algebra on X, and µ be a
measure on S(X). A measure space is a tuple (X,S(X), µ). The members of S(X)
are called measurable sets.

A measure space (X,S(X), µ) is called σ-finite if there is a countable collection
{An}n≥1 of measurable sets of finite measure such that X =

⋃∞
n=1An. If µ(X) = 1,

then (X,S(X), µ) is called a probability space. Notice that in a probability space,
µ can be seen as the probability, and X as the event space.

Definition A.4. Let A,B ⊂ X. Then A = B mod µ if µ(A4B) = 0, where 4
denotes the symmetric difference9.

Having established measurable sets and measure, we turn to functions that pre-
serve measure-related properties while moving the points within a space.

Definition A.5. Let (X,S(X), µ) be a measure space. A transformation T : X →
X is measurable if for any A ∈ S(X), T−1(A) ∈ S(X), where T−1(A) = {x ∈
X | T (x) ∈ A}. T is called measure-preserving if it is measurable and if for any
A ∈ S(X), µ(A) = µ(T−1(A)).

As far as ergodicity and entropy are concerned, measure spaces can be viewed
as dynamic objects. When observing the movement of a point x throughout space,
Tn(x) gives the position of x at second n.10 Thus, the sequence x, T (x), T 2(x), ...
captures the movement of x at every second.

9A4B = (A \B) ∪ (B \A).
10Composing T with itself n times is denoted as Tn.
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Below is the Borel-Cantelli Lemma, which is central in the proof of the Brin-
Katok formula. It asserts that if the sum of the measures of a countable collection’s
measurable sets is finite, then almost every point in the space lies in at most finitely
many of those measurable sets.

Lemma A.6 (Borel-Cantelli Lemma). Let (X,S(X), µ) be a probability space. Let
{En}n≥1 be a countable collection of measurable sets. If

∑∞
n=1 µ(En) <∞, then

µ(

∞⋂
i=1

∞⋃
j=i

Ej) = 0.

Proof. By measure properties, we have that for all i ∈ N,

(A.7) µ(

∞⋂
i=1

∞⋃
j=i

Ej) ≤ µ(

∞⋃
j=i

Ej) ≤
∞∑
j=i

µ(Ej).

By the assertion, lim
i→∞

∑∞
j=i µ(Ej) = 0. The LHS of (A.7) is a lower bound

of the RHS expression, so it follows that µ(
⋂∞
i=1

⋃∞
j=iEj) ≤ 0. But measure are

nonnegative only, so the result follows. �

A.2. Approximations with Sufficient Semi-Rings. Sometimes, proving prop-
erties about measurable sets with a specific collection of sets is difficult. The con-
cepts below allow us to manipulate properties of measurable sets by using approx-
imations or generalizations of a specific collection of sets.

Definition A.8. A semi-ring on a nonempty set X is a collection R(X) of subsets
of X such that

• R(X) is nonempty.
• R(X) is closed under intersection.
• If A,B ∈ R(X), then A \B =

⋃n
j=1Ej , where Ej ∈ R are disjoint.

Definition A.9. Let (x, S(X), µ) be a measure space. Then a semi-ring R of
subsets of X with finite measure is called a sufficient semi-ring of (X,S(X), µ) if
for every A ∈ S(X),

µ(A) = inf

{ ∞∑
j=1

µ(Ej) | A ⊂
∞⋃
j=1

Ej , where Ej ∈ R for all j ≥ 1

}
.

Sufficient semi-rings allow us to approximate the main property with another,
more suitable collections of sets. For instance, consider the unit interval [0, 1). The
collection of intervals on [0, 1) is a σ-algebra, but to prove a result with it may
be cumbersome. Instead, consider the dyadic intervals [ k2n ,

k+1
2n ), which form a

sufficient semi ring on [0, 1). They are approximations of the possible intervals on
[0, 1) but more specific. Often times, proving a result on a sufficient semi-ring is
sufficient to prove it for the σ-algebra.

A.3. Lebesgue Integration Theorems. We now present the most important
results of Lebesgue integration. These results aid in showing the required limiting
arguments in the Birkhoff Ergodic Theorem. The proofs of Fatou’s Lemma and the
Dominated Convergence Theorem can be found in [5].
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Lemma A.10 (Fatou’s Lemma). Let {fn} be a sequence of nonnegative measurable
functions. Then ∫

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ.

Theorem A.11 (Dominated Convergence Theorem). Let h be an integrable non-
negative function. Let {fn} be a sequence of measurable functions such that lim

n→∞
fn

exists a.e.
Set f(x) = lim

n→∞
fn(x). If |fn| ≤ h a.e. for any n > 0, then f is integrable, and

lim
n→∞

∫
fndµ =

∫
fdµ.
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