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Abstract

We provide a mathematical overview of Benoit B. Mandelbrot’s Multifractal Model of Asset

Returns (MMAR) as described in his The (Mis)Behavior of Markets. We assume that the reader

has an understanding of measure theory, Lebesgue integration, and measure-theoretic probability.

Defining fractal dimension and scaling behavior as key themes, we first rigorously define fractal

dimension. Then, we explore the fractal dimension of Brownian motion, and how fractal dimension

is interlinked with scaling behavior. Finally, we conclude by constructing the MMAR.
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1 Fractal Dimension

Dimension offers a crude yet surprisingly informative description of size. Intuitively, dimension gives a

rough estimate of how much “information” is contained in an object. For example, in the classic vector

space definition of dimension, R2 has dimension 2 while R has dimension 1; one can see that R2 is capable

of holding more information that R.

In the same vein, essential to the idea behind fractal dimension is the concept of scaling behavior.

Indeed, scaling behavior, fractial dimension, and their relationship occupy the main thread of this paper.

Take a straight line L of length 100 centimeters i.e. 1 meter. We know beforehand that L has dimension 1.

To see scaling behavior, we observe that measuring L requires a single meter-long stick, or 100 centimeter-

long sticks. Furthermore, centimeter-long sticks are 1
100 th of the length of meter-long sticks. We can then

generalize to the following equation

S = λ−D, where S = number of sticks, λ = scaling factor, and D = dimension.

The relationship can also be written as D = − logλ S = − logS
log λ . We check that 100 = 1

100

−1
, as

expected.

For the two-dimensional case, denote Sx as a square with side-length x-centimeters. We can cover

a S100 with 16 S25’s, or 100 S1’s. As expected, since S25 has a side-length that is 1
4 of S100’s, we have

16 = 1
4

−2
. Similarly, 100 = 1

10

−2
.

Dimension hence relies on observing how many “sticks” of a certain size are required to cover the

object at hand, and how this quantity scales as the stick-size varies. This scaling concept also meshes

well with the idea of dimension as an estimate of “information-holding capacity”. With these ideas

in mind, we introduce Hausdorff dimension as an important alternative to the restrictive vector space

definition of dimension.

1.1 Hausdorff Dimension

Definition 1.1 (Diameter). Let F be a nonempty subset of Rn. The diameter of F , denoted by |F |, is

defined as

|F | = sup{d(x, y) : x, y ∈ F}, where d(·) is a metric on Rn.

Definition 1.2 (δ-cover). Let F ∈ Rn and δ > 0. Suppose F ⊂
⋃∞
i=1 Ui, where for all i, |Ui| ≤ δ. Then

{Ui}∞i=1 is called a δ-cover of F . Furthermore, define Cδ(F ) as the δ-covers of F.

Remark 1.3. Note that δ-covers are countable; this is possible because Rn is separable i.e. contains a

countable dense subset.

Definition 1.4 (Hausdorff measure). Let s ≥ 0 and F ⊂ Rn. Then for δ > 0, define

Hsδ(F ) = inf

{ ∞∑
i=1

|Ui|s : {Ui}∞i=1 ∈ Cδ(F )

}
.
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ThatHsδ exists follows from the fact that diameters are nonnegative. We then define the s-dimensional

Hausdorff measure of F as

Hs(F ) = lim
δ→0
Hsδ(F ).

Proposition 1.5. The s-dimensional Hausdorff measure is a measure.

Proof. See [2].

Proposition 1.6 (Scaling property of Hausdorff measure). If F ⊂ Rn and λ > 0, then Hs(λF ) =

λsHs(F ), where λF = {λx : x ∈ F}.

Proof. Let δ > 0 and let {Ui} be a δ-cover of F i.e. F ⊂
⋃∞
i=1 Ui where |Ui| ≤ δ for all i. Notice that

λF ⊂
⋃∞
i=1 λUi. Because |λUi| = λ|Ui|, it follows that

|λUi| = λ|Ui| ≤ λδ, so {λUi} is a λδ-cover of λF.

By definition, we have Hsλδ(λF ) ≤
∑∞
i=1 |λUi|s = λs

∑∞
i=1 |Ui|s. Given that this holds for any δ-cover

{Ui} of F , we have Hsλδ(λF ) ≤ λsHsδ(F ). Taking δ → 0, we get Hs(λF ) ≤ λsHs(F ).

For the opposite inequality, it follows by similar logic that Hsδ
λ

(F ) ≤
(
1
λ

)sHsδ(λF ). Taking δ → 0, we

get Hs(λF ) ≥ λsHs(F ), so Hs(λF ) = λsHs(F ).

Given δ < 1 and F ⊂ Rn, it follows by definition of Hausdorff measure that Hs(F ) increases as s

increases. Furthermore, if t > s and {Ui} is a δ-cover of F , then
∑
|Ui|t ≤ δt−s

∑
|Ui|s. Therefore, it

follows by taking infima and letting δ → 0 that if Hs(F ) < ∞, then Ht(F ) = 0. This is to say that

there exists a p such that the Hausdorff measure “jumps” from ∞ to 0; this critical p is defined as the

Hausdorff dimension.

Definition 1.7 (Hausdorff dimension). Let F ⊂ Rn. We define the Hausdorff dimension of F as

dimHF = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) =∞} such that

Hs(F ) =

0 if s > dimHF

∞ if s < dimHF
.

Note that dimHF can be 0,∞, or between 0 and ∞.

Proposition 1.8. Hausdorff dimension has the following properties:

1. Monotonicity. If E ⊂ F , then dimHE ≤ dimHF .

2. Countable stability. Suppose {Ui}∞i=1 is a countable collection of sets. Then dimH (
⋃∞
i=1 Ui) =

supi≥1 dimHUi.

Proof. Monotonicity follows from the monotonicity of the Hausdorff measure, as given in Proposition

1.5. For countable stability, observe that for any k, dimHUk ≤ dimH (
⋃∞
i=1 Ui) by monotonicity. Hence

supi≥1 dimHUi ≤ dimH (
⋃∞
i=1 Ui) . For the other inequality, consider t > supi≥1 dimHUi. Countable sub-

additivity of the Hausdorff measure gives Ht (
⋃∞
i=1 Ui) ≤

∑∞
i=1Ht(Ui) = 0. This therefore implies that
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dimH (
⋃∞
i=1 Ui) ≤ supi≥1 dimHUi. If this is not the case, then there exists ε > 0 with supi≥1 dimHUi +

ε < dimH (
⋃∞
i=1 Ui) and Hε+supi≥1 dimHUi (

⋃∞
i=1 Ui) = 0, implying that dimH (

⋃∞
i=1 Ui) cannot be the

infimum, which is a contradiction.

Next, we identify several properties of the Hausdorff dimension regarding images of a specific class of

functions.

Definition 1.9 (α-Hölder continuity). A function f : [0,∞) → R is said to be α-Hölder continuous if

there exists c > 0 such that for any x, y ∈ [0,∞),

|f(x)− f(y)| ≤ c|x− y|α.

Furthermore, f is said to be locally α-Hölder continuous at x ≥ 0 if there exists ε > 0 and c > 0 such

that for any y ∈ [0,∞) with |x− y| < ε,

|f(x)− f(y)| ≤ c|x− y|α.

Proposition 1.10. Suppose f : [0, 1]→ Rd is an α-Hölder continuous function. Define a∧b := min(a, b).

The following are true:

1. dimH(Graphf [0, 1]) ≤ 1 + (1− α)
(
d ∧ 1

a

)
, where Graphf [0, 1] = {(t, f(t)) : t ∈ [0, 1]} ⊂ Rd+1, and

2. dimHf(A) ≤ dimHA
α for any A ⊂ [0, 1].

Proof of 1. Let ε > 0. Because f is α-Hölder continuous, there exists c > 0 such that for all x, y ∈ [0, 1]

with |x− y| ≤ ε, |f(x)− f(y)| ≤ cεα. Now, observe that at most d 1ε e intervals of length ε are needed to

cover [0, 1]. Call these intervals {In}. Then the α-Hölder condition yields that the image of each In can

be contained in a ball of radius cεα.

We make two observations that give an estimate of how many balls of diameter ε are needed to cover

f([0, 1]):

1. Every ball of radius cεα can be covered by a constant multiple of εdα−d balls of diameter ε. This

follows from the volume calculation

Γ1ε
α·d

Γ2εd
, where Γ1,Γ2 are the appropriate constants in the volume formula.

2. Subintervals of length
(
ε
c

) 1
α map into balls of diameter ε. This means that a constant multiple

of ε1−
1
α balls of diameter ε are needed to cover a ball of radius cεα. This follows from the length

calculation

ε(
ε
c

) 1
α

= Kε1−
1
α , where K is the appropriate constant.

To cover Graphf [0, 1], consider the products of intervals {In} and balls of diameter ε. The first

observation asserts that a constant multiple of εdα−d−1 product sets are necessary to cover Graphf [0, 1],

while the second observation posits instead that a constant multiple of ε−
1
α product sets are necessary.
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Notice that the diameters of the product sets are of order ε. Denote Mε as the greatest diameter

among the product sets in either construction. For the first observation, if s > −(dα − d − 1), then

HsMε(Graphf [0, 1]) = 0 by definition of Hausdorff measure. The second observation yields that if s > 1
α ,

then HsMε(Graphf [0, 1]) = 0. It then follows that

dimH(Graphf [0, 1]) ≤ 1 + (1− α)

(
d ∧ 1

α

)
.

Proof of 2. By Proposition 1.6 and the α-Hölder condition, we have that

H s
α (f(A)) ≤ c sαHs(A) for any s ≥ 0.

Hence if s > dimHA, then H s
α (f(A)) = 0. It follows that for any t > dimHA

α , Ht(f(A)) = 0, so

dimHf(A) ≤ dimHA
α .

Corollary 1.11. Proposition 1.10 holds even if f is locally α-Hölder continuous.

Proof. This follows from the countable stability of the Hausdorff dimension.

Remark 1.12. Other interpretations of fractal dimension exist, namely box-counting dimension (also

known as Minkowski dimension). Box-counting dimension has several methods of calculation, the easiest

being overlaying a grid with length δ squares onto a set, and counting how many squares intersect with

that set - the dimension is then obtained by observing how this count scales as δ → 0. Although useful,

we choose to omit discussions of other definitions for the sake of clarity.

2 Brownian Motion

We now turn our attention to random processes and investigate their fractal dimensions in order to

discover a connection to scaling behavior.

Definition 2.1 (Gaussian random vector). A vector X = (X1, ..., Xn)T of random variables is called a

Gaussian random vector if there exists a matrix A ∈ Rn×m and b ∈ Rn such that

X = AY + b, where Y ∼ N(0, Im) and Im is the m×m identity matrix.

Definition 2.2 (Gaussian random process). Let T be an index set. A stochastic process {Y (t) : t ∈ T} is

called a Gaussian random process if for all t1 < · · · < tn with t1, ..., tn ∈ T , the vector (Y (t1), · · · , Y (tn))T

is a Gaussian random vector.

Definition 2.3 (Brownian motion in Rd). A stochastic process {B(t) : t ≥ 0} of Rd-valued random

variables is called a standard Brownian motion in Rd if it satisfies the following:

1. B(0) = 0.

2. Has independent increments i.e. B(tn)−B(tn−1)⊥ · · ·⊥B(t2)−B(t1) for 0 ≤ t1 ≤ · · · ≤ tn.
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3. For all t ≥ 0 and h > 0, B(t+ h)−B(t) ∼ N(0, hId), where Id is the d× d identity matrix.

4. The sample function t 7→ B(t) is continuous almost surely.

Hereafter we refer to Brownian motion as BM, and standard Brownian motion as sBM, with no

distinction between real or vector-valued BM.

We introduce several properties of sBM that prove useful in finding its fractal dimension. See [4] for

the detailed proofs.

Proposition 2.4. Let {B(t) : t ≥ 0} be a sBM, and a > 0. Then {X(t) : t ≥ 0} with X(t) = 1
aB(a2t) is

also a sBM.

Proposition 2.5. Let {B(t) : t ≥ 0} be a sBM. Then {X(t) : t ≥ 0} with

X(t) =

0 if t = 0

tB
(
1
t

)
if t > 0

is also a sBM.

Theorem 2.6. If α < 1
2 , then Brownian motion is everywhere locally α-Hölder continuous.

2.1 Calculation of fractal dimension

We first determine the upper bounds for the Hausdorff dimension of Brownian motion.

Theorem 2.7. For any fixed A ⊂ [0,∞), the graph of d-dimensional Brownian motion {B(t) : t ≥ 0}
satisfies

dimH(GraphBA) ≤

 3
2 if d = 1

2 if d ≥ 2
almost surely.

Furthermore,

dimHB(A) ≤ (2 · dimHA) ∧ d almost surely.

Proof. This follows from Theorem 2.6 and Corollary 1.11.

It remains to find the lower bounds. For this, we introduce the potential theoretic method.

Definition 2.8 (α-potential, α-energy). Suppose µ is a mass distribution on a metric space (E, ρ) and

α ≥ 0. Then α-potential of a point x ∈ E with respect to µ is defined as

φα(x) =

∫
1

ρ(x, y)α
dµ(y).

The α-energy of µ is then defined as

Iα(µ) =

∫
φα(x)dµ(x) =

∫∫
1

ρ(x, y)α
dµ(x)dµ(y).
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Theorem 2.9 (Potential theoretic method). Let α ≥ 0 and µ be a mass distribution on a metric space

(E, ρ). Then for every ε > 0,

Hαε (E) ≥ µ(E)2∫∫
ρ(x,y)<ε

1
ρ(x,y)α dµ(x)dµ(y)

.

Therefore, if Iα(µ) <∞, then Hα(E) =∞, so dimHE ≥ α.

Proof. Let ε > 0 and δ > 0. By definition of Hausdorff measure, there exists a pairwise disjoint covering

{An} of E with each set having diameter less than ε such that

∞∑
n=1

|An|α ≤ Hαε (E) + δ.

We have ∫∫
ρ(x,y)<ε

1

ρ(x, y)α
dµ(x)dµ(y) ≥

∞∑
n=1

∫∫
An×An

1

ρ(x, y)α
dµ(x)dµ(y).

For y ∈ An, it follows that ρ(x, y)α ≤ |An|α for any x ∈ An. Hence 1
|An|α ≤

1
ρ(x,y)α . It then follows

that

∞∑
n=1

∫∫
An×An

1

ρ(x, y)α
dµ(x)dµ(y) ≥

∞∑
n=1

∫
An

µ(An)

|An|α
dµ(y) ≥

∞∑
n=1

µ(An)2

|An|α
.

Furthermore, by countable sub-additivity, we have

µ(E) ≤
∞∑
n=1

µ(An) =

∞∑
n=1

|An|
α
2
µ(An)

|An|
α
2
.

By the Cauchy-Schwartz inequality, we have

µ(E)2 ≤
∞∑
n=1

|An|α ·
∞∑
n=1

µ(An)2

|An|α

≤ (Hαε (E) + δ) ·
∞∑
n=1

µ(An)2

|An|α

≤ (Hαε (E) + δ) ·
∫∫

ρ(x,y)<ε

1

ρ(x, y)α
dµ(x)dµ(y).

Since this inequality holds for all δ > 0, it follows that as δ → 0,

Hαε (E) ≥ µ(E)2∫∫
ρ(x,y)<ε

1
ρ(x,y)α dµ(x)dµ(y)

.

Furthermore, if Iα(µ) <∞, then as ε→ 0, Hαε (E)→∞. Hence Hα(E) =∞, so dimHE ≥ α.

Remark 2.10. To conclude that dimHE ≥ α almost surely, it suffices to have E(Iα(µ)) <∞. This follows

from Markov’s inequality. Keeping in mind that Iα(µ) has a dependency on a metric space (E, ρ) for a
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random metric space (E, ρ), we have

ε · µ({E : Iα(µ) ≥ ε}) ≤ E(Iα(µ)) <∞.

Since this holds for all ε > 0, it follows that Iα(µ) <∞ almost surely.

Theorem 2.11. Suppose {B(t) : t ∈ [0, 1]} is a d-dimensional BM.

1. If d = 1, then dimH(GraphB [0, 1]) = 3
2 almost surely.

2. If d ≥ 2, then dimHB([0, 1]) = dimH(GraphB [0, 1]) = 2 almost surely.

Proof of 1. Define a measure µ on GraphB [0, 1], where for any Borel A ⊂ [0, 1]× R,

µ(A) = L(t ∈ [0, 1] : (t, B(t)) ∈ A), with Lebesgue measure L.

Let 0 < α < 3
2 . By changing variables, we have

E(Iα(µ)) = E
∫∫

[0,1]×R

1

|x− y|α
dµ(x)dµ(y)

= E
∫ 1

0

∫ 1

0

1

|(t, B(t))− (s,B(s))|α
ds dt

= E
∫ 1

0

∫ 1

0

1

|(t− s)2 + (B(t)−B(s))2|α2
ds dt.

By Fubini’s theorem, it follows that

E(Iα(µ)) ≤ 2

∫ 1

0

E((t2 +B(t)2)−
α
2 )dt.

Notice that B(t) =
√
tZ, where Z ∼ N(0, 1). Denoting z 7→ p(z) as the density function of N(0, 1),

observe that (t2 + tz2)−
α
2 p(z) = (t2 + t(−z)2)−

α
2 p(−z) for any nonnegative z ∈ R. Hence, we have

E((t2 +B(t)2)−
α
2 ) =

∫ ∞
−∞

(t2 + tz2)−
α
2 p(z)dz

= 2

∫ ∞
0

(t2 + tz2)−
α
2 p(z)dz.

Furthermore, we have

∫ ∞
0

(t2 + tz2)−
α
2 p(z)dz ≤

∫ √t
0

t−αdz +

∫ ∞
√
t

(tz2)−
α
2 p(z)dz

= t
1
2−α + t−

α
2

∫ ∞
√
t

z−αp(z)dz

= t
1
2−α + t−

α
2

(∫ 1

√
t

z−αp(z)dz +

∫ ∞
1

z−αp(z)dz

)
≤ t 1

2−α + t−
α
2

(∫ 1

√
t

z−αdz + 1

)
.
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In total, we obtain the following inequality:

E(Iα(µ)) ≤ 4

(∫ 1

0

t
1
2−α + t−

α
2

(∫ 1

√
t

z−αdz + 1

))
= 4

(∫ 1

0

t
1
2−α + t−

α
2 +

t−
α
2 − t 1

2−α

1− α

)

= 4

 t
3
2−α

3
2 − α

∣∣∣∣∣
1

0

+ (· · · )

 .

Notice that the above is finite if 0 < α < 3
2 . It then follows from Theorem 2.9 that dimH(GraphB [0, 1]) ≥

3
2 . Combined with Theorem 2.7, we have our result.

Proof of 2. Define a measure µ on B([0, 1]), where for any Borel set A ⊂ Rd,

µ(A) = L(B−1(A) ∩ [0, 1]), with Lebesgue measure L.

Let 0 < α < 2. Noting Remark 2.10 and change of variables, we want to show that

E
∫∫

Rd

1

|x− y|α
dµ(x)dµ(y) = E

∫ 1

0

∫ 1

0

1

|B(t)−B(s)|α
ds dt <∞.

Notice that |B(t)−B(s)| and |t− s|− 1
2 |B(1)| have the same distribution. Given that z 7→ p(z) is the

density function of N(0, Id), we have

E(|B(t)−B(s)|−α) = |t− s|−α2 · E(|B(1)|−α)

= |t− s|−α2 ·
∫
Rd
|z|−αp(z) dz︸ ︷︷ ︸

<∞

.

By Fubini’s theorem, it follows that

E
∫ 1

0

∫ 1

0

1

|B(t)−B(s)|α
ds dt =

∫ 1

0

∫ 1

0

E(|B(t)−B(s)|−α) ds dt

=

(∫
Rd
|z|−αp(z) dz

)
·
∫ 1

0

∫ 1

0

|t− s|−α2 ds dt

≤
(∫

Rd
|z|−αp(z) dz

)
· 2
∫ 1

0

u−
α
2 du <∞.

Remark 2.10 and Theorem 2.9 gives that dimHB([0, 1]) ≥ α almost surely, and the result follows by

taking α→ 2. Now, observe that B([0, 1]) is simply a projection of GraphB [0, 1]. Given the compactness

of [0, 1] and the almost-sure continuity of B, it follows that dimH(GraphB [0, 1]) ≥ 2 almost surely also.

Finally, in conjunction with Theorem 2.7, we have our result.
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3 Fractional Brownian Motion

Definition 3.1 (Fractional Brownian motion). A stochastic process {BH(t) : t ≥ 0} is called a fractional

Brownian motion with Hurst index H ∈ (0, 1) if it is a centered Gaussian process with covariance function

E[BH(t)BH(s)] =
1

2

(
t2H + s2H − |t− s|2H

)
.

We denote a fractional Brownian motion with Hurst index H as fBMH .

Remark 3.2. The mean and covariance function suffice to define a Gaussian process, as the Gaussian

distribution’s characteristic function depends only on its mean and covariance matrix.

Proposition 3.3. fBM 1
2

is equivalent to sBM.

Proof. This follows from calculating the covariance function of fBM 1
2
.

Proposition 3.4. fBMH has stationary increments. Furthermore, increments are dependent, with the

nature of the dependence relying on H.

Proof. We skip the proof of stationary increments - the curious reader can find a proof in [5]. To show

that increments are dependent, consider s1, t1, s2, t2 ∈ R such that s1 < t1 < s2 < t2. Then the covariance

function yields

E[(BH(t1)−BH(s1))(BH(t2)−BH(s2))] =
1

2

(
(t2 − s1)2H − (t2 − t1)2H − (s2 − s1)2H + (s2 − t1)2H

)
.

The function x 7→ x2H is concave if H < 1
2 , and convex if H > 1

2 . Therefore, we have

E[(BH(t1)−BH(s1))(BH(t2)−BH(s2))]

< 0 if H < 1
2

> 0 if H > 1
2

.

More specifically, if H < 1
2 , trends are less likely to persist i.e. antipersistent, while H > 1

2 means

that trends are likely to continue i.e. persistent.

Proposition 3.5. Let {BH(t) : t ≥ 0} be a fBMH , and a > 0. Then {BH(at)} is equivalent to

{aHBH(t)}. Therefore, fBM displays scaling behavior based on the Hurst index.

Proof. This follows from a straightforward calculation of the covariances of both processes.

Theorem 3.6. Suppose {BH(t) : t ≥ 0} is a fBMH . Then dimH(GraphBH [0, 1]) = 2−H.

Proof. This follows by similar logic to Theorem 2.11.

Remark 3.7. This gives a glimpse of the critical relationship between fractal dimension and the Hurst

index. Furthermore, in conjunction with Proposition 3.5, we see how fractal dimension behavior interacts

with fBM’s scaling behavior. See Figure 1 for a visual example.
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4 Multifractal Model of Asset Returns (MMAR)

Our discussions about fractal dimension and scaling laws culminate in Mandelbrot’s Multifractal Model

of Asset Returns. Mandelbrot identifies two problematic assumptions in contemporary financial models:

thin tails (hence finite variance) and independence of separate time periods.

The independence of separate time periods can be solved with fBM, as we have control over trends

by adjusting the Hurst index. The former problem can be solved with a fractal conception of time. In

the market, trading activity is not uniform across time; instead, there are bursts of activity interspersed

between periods of calm. Constructing a fractal measure µ of a finite time interval [0, T ], then taking the

c.d.f. of µ gives a very flexible model for trading activity.

We first define multifractal processes. Observations of multifractal behavior will be made in later

sections.

Definition 4.1 (Multifractal process). A stochastic process {X(t) : t ≥ 0} is called multifractal if it has

stationary increments and satisfies for all t ∈ T , q ∈ Q

E[|X(t+ ∆t)−X(t)|q] ∼ c(q)(∆t)τ(q)+1 as ∆t→ 0,

where T ,Q ⊂ R are intervals with positive lengths, 0 ∈ T , and [0, 1] ⊂ Q.1 Furthermore, c, τ : Q → R.

We call τ the scaling function of {X(t)}.

We justify the use of absolute moments in the definition of multifractality. Recall that fractal di-

mension has an intimate relationship with scaling behavior. In the same vein, multifractal processes are

similarly defined by scaling properties on the process’s absolute moments.

Suppose {X(t)} is a multifractal process. Because {X(t)} has stationary increments, X(c+ t)−X(t)

has the same distribution as X(t). Hence we can equate t with time difference. Rewrite the qth absolute

moment as

E[|X(t)|q] = E[|X(t)|q−1 · |X(t)|].

In this way, the qth absolute moment can be viewed as a weighted average, “summed” over components

with the form

|X(t)|q−1 · {probability of X(t)}︸ ︷︷ ︸
weight

· |X(t)|︸ ︷︷ ︸
value

.

The qth absolute moment can thus be seen as describing behavior far away from the mean. Now, we

compare E[|X(t)|q] with E[|X
(
t
2

)
|q] :

E
[∣∣∣∣X ( t2

)∣∣∣∣q] ∼ c(q) · tτ(q)+1 ·
(

1

2

)τ(q)+1

∼ E[|X(t)|q] ·
(

1

2

)τ(q)+1

.

1We write that f ∼ g if
f(x)
g(x)

→ 1 as x→ 0.
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By halving the time difference, we see that the behavior far away from the mean scales appropriately,

as expected.

4.1 Construction of multifractal measures

For a simple exercise, consider the binomial multiplicative cascade. Let X = [0, 1], and let m0,m1 ∈ (0, 1)

such that m0 + m1 = 1. By halving X and redistributing the mass according to m0 and m1, we obtain

the measure µ1, where

µ1 ([0, 1/2]) = m0 and µ1 ([1/2, 1]) = m1.

Further halving
[
0, 12
]

and
[
1
2 , 1
]

and redistributing gives the measure µ2, where

µ2[0, 1/4] = m2
0,

µ2[1/4, 1/2] = µ2[1/2, 3/4] = m0m1, and

µ2[3/4, 1] = m2
1.

Continuing this recursive halving and redistribution process, we obtain the binomial measure µ.

Formally, µ is the limit of the iterated measures. We can further generalize the binomial measure;

instead of halving, we can divide any interval into b > 2 sub-intervals and redistribute according to

weights m0, ...,mb−1, which sum to 1. Even further, the weights assigned to each sub-interval can be

randomized. See Figure 2 for a concrete visualization.

Definition 4.2 (Microcanonical multiplicative cascade). Let X = [0, 1], and let b > 2. The microcanon-

ical multiplicative cascade is constructed as follows:

1. Subdivide X into b equal intervals. Call these sub-intervals X0, ..., Xb−1.

2. Suppose M0, ...,Mb−1 are identically distributed from a distribution M such that
∑b−1
i=0 Mi = 1.

Call these random variables multipliers.

3. Define the measure µ1, where µ1(Xβ) = Mβ for 0 ≤ β < b.

4. For 0 ≤ β < b, subdivide Xβ into b equal intervals, and call these sub-intervals Xβ0, ..., Xβ(b−1).

5. For 0 ≤ β < b, suppose Mβ0, ...,Mβ(b−1) are identically distributed from a distribution M such that∑b−1
i=0 Mβi = 1. Furthermore, assume that for all 0 ≤ β < b, Mβ0, ...,Mβ(b−1) are independent from

M0, ...,Mb−1.2

6. Define the measure µ2, where µ2(Xβγ) = Mβγ for 0 ≤ β, γ < b.

7. Continue the above steps of subdivision, sampling, and redistribution.

Definition 4.3 (Canonical multiplicative cascade). The canonical multiplicative cascade is constructed

in the same manner as the microcanonical multiplicative cascade, but with one change: the multipliers on

each stage should sum to 1 on average i.e. E
(∑b−1

i=0 Mi

)
= 1. We call the random variable Ω =

∑b−1
i=1 Mi

the aggregate of the canonical multiplcative cascade.
2In other words, multipliers at the same “stage” are identically distributed, and multipliers on different stages are

independent from each other.

12
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Proposition 4.4. Let X = [0, 1], and b > 2. Choose M as the multiplier random variable, to which

every multiplier is equal in distribution. Define µmc as a microcanonical multiplicative measure on X,

and µc as a canonical multiplicative measure. If t =
∑k
i=1 nib

−i where n1, ..., nk ∈ {0, 1}, and ∆t = b−k,

then for q ≥ 0

E(µmc([t, t+ ∆t])q) = (∆t)τ(q)+1, and

E(µc([t, t+ ∆t])q) = E(Ωq)(∆t)τ(q)+1,

where τ(q) = − logb E(Mq)− 1.

Proof. Using the multiplier notation of Definition 4.2, notice that by construction of µmc,

µmc([t, t+ ∆t]) = Mn1Mn1n2 · · ·Mn1n2...nk .

Since multipliers are identically and independently distributed across stages, it then follows that

E(µmc([t, t+ ∆t])q) = E(Mq
n1

) · · ·E(Mq
n1...nk

)

= E(Mq)k

= bk logb E(M
q)

= (b−k)− logb E(M
q)−1+1 = (∆t)τ(q)+1.

Similarly, by construction of µc,

µc([t, t+ ∆t]) = Ω ·Mn1
Mn1n2

· · ·Mn1n2...nk .

By similar logic, we get E(µc([t, t+ ∆t])q) = E(Ωq)(∆t)τ(q)+1.

Remark 4.5. For our definitions of microcanonical and canonical measures, Proposition 4.4 holds only

for intervals of size b−k. This is to say that we are dealing with a discrete notion of time. It is, however,

possible to construct continuous multiplicative cascades.

Proposition 4.4 gives that microcanonical and canonical multiplicative cascades display multifractal

behavior in a similar manner to multifractal processes. In particular, we see scaling behavior in the

absolute moments as a function of an interval’s length. Hence, we arrive at the definition of multifractal

measure.

Definition 4.6. Let X ⊂ R be an interval of the form [0, T ], where 0 < T ≤ ∞. A random measure µ

defined on X is called a multifractal measure if for all t ∈ X, q ∈ Q,

E[µ[t, t+ ∆t]q] ∼ c(q) · (∆t)τ(q)+1 as ∆t→ 0,

where Q ⊂ R is an interval containing [0, 1], and c, τ : Q → R.

13
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4.2 Model definition

Definition 4.7 (Compound process). Suppose {X(t) : t ∈ [0, T ]}, where 0 < T <∞, is defined as

X(t) = BH(θ(t)), where θ(t) = µ([0, t]) and µ is a multifractal measure on [0, T ].

Furthermore, {BH(t)} and {θ(t)} are independent. The process {X(t)} is called a compound process,

and it describes the multifractal model of asset returns, where X(t) represents the log-returns of a financial

asset.

Theorem 4.8. Let 0 < T <∞. The compound process {X(t) : t ∈ [0, T ]} is multifractal.

Proof. Let q ≥ 0. We want to show that E[|X(t)|q] is a scaled power function. By the law of total

expectation, we have that

E[|X(t)|q] = E[|BH(θ(t))|q] = E[E[|BH(θ(t))|q | θ(t) = u]].

Therefore, we calculate

E[|BH(θ(t))|q | θ(t) = u] = E[|BH(u)|q | θ(t) = u]

= θ(t)Hq · E[|BH(1)|q].

Since {BH(t)} and {θ(t)} are independent, it follows that

E[E[|BH(θ(t))|q | θ(t) = u]] = E[θ(t)Hq] · E[|BH(1)|q].

The multifractality of {θ(t)} gives that

E[θ(t)Hq] ∼ cθ(Hq)tτθ(Hq)+1 as t→ 0.

Define cX(q) = cθ(Hq) · E[|BH(1)|q] and τX(q) = τθ(Hq). It then follows that

E[|X(t)|q] ∼ cX(q)tτX(q)+1 as t→ 0, so {X(t)} is multifractal.

Remark 4.9. It can be shown that the compound process generates a wide degree of tail behaviors. In

particular, using a microcanonical multiplicative cascade as the basis for θ(t) generates thin tails, while

a canonical multiplicative cascade generates much fatter tails. Hence the compound process allows for a

great degree of flexibility while maintaining simplicity.
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A Supplementary material

A.1 Properties of multifractal processes

Let {X(t)} be a multifractal process with scaling function τ .

Theorem A.1. For a bounded interval [0, T ] ⊃ [0, 1], the scaling function satisfies the following:

1. τ(0) = −1.

2. τ is concave.

Proof. 1. Because E[|X(t)|0] = c(0)tτ(0)+1 = 0 for all t ∈ [0, T ], it follows that τ(0) = −1. Hence the

scaling function always has intercept −1.

2. Let α ∈ [0, 1], and let q1, q2 ∈ [0, T ] such that q1 < q2. Setting q = q1(α) + q2(1− α), and defining

p(z) as the density function of N(0, t), H’́older’s inequality gives

E[|X(t)|q] = E[|X(t)|q1(α) · |X(t)|q2(1−α)]

≤ E[|X(t)|q1 ]α · E[|X(t)|q2 ](1−α).

Multifractality gives

c(q)tτ(q)+1 ≤ (c(q1)tτ(q1)+1)α · (c(q2)tτ(q2)+1)1−α.

Taking logarithms then gives

ln c(q) + (τ(q) + 1) ln t ≤ α(ln c(q1) + (τ(q1) + 1) ln t) + (1− α)(ln c(q2) + (τ(q2) + 1) ln t).

Simplifying the inequality, we get

ln c(q) + τ(q) ln t ≤ (ατ(q1) + (1− α)τ(q2)) ln t+ (α ln c(q1) + (1− α) ln c(q2))

Suppose t is sufficiently small such that ln t < 0. Dividing both sides by ln t and letting t→ 0, we

have

τ(q) ≥ ατ(q1) + (1− α)τ(q2), which gives our result.
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B Images

Figure 1: Fractional Brownian Motion with differing Hurst indices. As the Hurst index increases, the
“fractalness” appears to decrease as Theorem 3.6 suggests. Furthermore, notice the persistence/anti-
persistence trends, as noted in Proposition 3.4. These simulations were generated using crflynn’s stochas-
tic package.
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Figure 2: The binomial measure. The top shows µ1 using m0 = 0.7 and m1 = 0.3. The bottom shows
µ10 using the same weights, but with randomization of which weights go left or right. The generation
code is shown in the code section of the appendix.

C Code

C.1 Code used to generate binomial measure

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 def split_binom ():

5 np.random.seed (3)

6

7 m_0 = np.random.uniform (0,1,1)

8 m_1 = 1 - m_0[0]

9

10 return [m_0[0], m_1]

11

12 def random_binom_cascade(grid , values , iterations =3, key=3, random=True):

13 grid_length = len(grid)

18
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14 value_length = len(values)

15

16 if grid_length != value_length:

17 raise ValueError ("grid and value list lengths must match")

18

19 if iterations == 0:

20 updated_grid = grid + [1.0]

21 updated_values = [i*(2** key) for i in values + [values[len(values) - 1]]]

22 return updated_grid , updated_values

23

24 else:

25 new_grid = [i/( grid_length * 2) for i in range(grid_length * 2)]

26 new_values = []

27

28 m = split_binom ()

29

30 for orig_point in range(grid_length):

31 choice = 0

32 if random:

33 choice = np.random.choice (2)

34

35 left_multiplier = values[orig_point] * m[choice]

36 right_multiplier = values[orig_point] * m[1-choice]

37

38 new_values = new_values + [left_multiplier , right_multiplier]

39

40 return random_binom_cascade(new_grid , new_values ,

41 iterations=iterations -1,

42 key=key ,

43 random=random)

44

45
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